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fect compliance” usually relies on an Instrumental Variable strategy, which can

yield imprecise and uninformative inference when compliance rates are low. We

tackle this problem by proposing a Test-and-Select estimator that exploits covari-

ate information to restrict estimation to a subpopulation with non-zero compli-

ance. We derive the asymptotic properties of our proposed estimator under stan-

dard and weak-IV-like asymptotics. We provide conditions under which it domi-

nates the usual 2SLS estimator in terms of precision. Under an assumption on the

degree of treatment effect heterogeneity, our estimator remains first-order unbi-

ased with respect to the Local Average Treatment Effect estimand. We illustrate

finite sample properties, robustness to treatment effect heterogeneity and precision

gains using Monte Carlo simulations. Applying our methodology to the returns to

schooling example, we document that a reduction in standard errors of 12% to

48% depending on specifications.
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1. INTRODUCTION

Instrumental variables (IV) strategies are an integral part of the standard toolkit of ap-

plied economists and social scientists. This is due in part to their use for the estimation

of causal effects in controlled or natural experiments with imperfect compliance. Such ex-

periments are pervasive in applied research, since many interventions (such as education or

training programs) cannot be imposed on a randomly selected group. Instead, in such cases,

members of the treatment group are simply encouraged or given the opportunity to benefit

from the intervention. However, IV estimation in these settings is commonly plagued by

low compliance rates, which lead to an inflated variance and thus possibly uninformative

inference on the causal effects of interest. Given the substantial financial and human invest-

ment associated with implementing a typical Randomized Controlled Trial (RCT) and the

scarcity of existing natural experiments, failing to inform policymaking due to imprecise

estimation procedures in such experiments has a significant social cost.

However, a low average compliance rate can obscure highly heterogeneous compliance

behaviors across subpopulations with different observable characteristics. This leaves room

for researchers to improve the precision of their estimation by taking into account this het-

erogeneity. In this paper, we propose and study the properties of an intuitive way to take

advantage of such heterogeneity. Our Test-and-Select estimator restricts IV estimation to

subpopulations with significant non-zero compliance rates in sample. Excluding subgroups

estimated to have a zero first-stage effect from the estimation sample gets rid of observa-

tions that bring little to no signal on the causal effect of interest, while possibly adding

considerable noise to the distribution of the standard IV estimator.

The present paper is structured as follows. We first underline the pitfalls of “naively”

implementing such a selection rule based on estimated compliance rates, and then propose

that data-splitting provides a simple fix to this issue. Next, we study the asymptotic prop-

erties of the Test-and-Select estimator under both standard and weak-IV-like asymptotic

sequences. The former allows us to illustrate the potential gains in precision, while the

latter aims at better approximating the finite sample properties of our proposed estimator.

We also show that the Test-and-select procedure is robust to treatment effect heterogene-

ity. Indeed, we show that our proposed estimator remains first-order unbiased with respect

to the Local Average Treatment Effect (LATE) under patterns of treatment effect hetero-
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geneity that would generate a first-order bias in alternative estimation strategies proposed

in the literature (Coussens and Spiess, 2021, Huntington-Klein, 2020, Abadie et al., 2022).

Lastly, we study the finite sample properties of this estimator in Monte-Carlo simulations

and in an application using changes in compulsory schooling as an instrument for education

(Stephens and Yang, 2014). These sections illustrate (i) the potential gains in precision from

implementing our methodology instead of the usual 2SLS estimator, and (ii) the improved

robustness of our estimator to treatment effect heterogeneity compared to alternatives.

The burden placed by low compliance rates on the precision of the Two-Stage-Least-

Squares (2SLS) estimator is well-known to most empiricists, and best illustrated by the

variance formula of the 2SLS estimator in the simple case where the variance of the errors

(denoted σ2ε ) is homoscedastic.1 Denoting by N the sample size, p the share of encouraged

individuals, and π the share of compliers, we get:

Var

[
L̂ATE

2SLS
]
=

1

N
· 1

π2
· σ2ε
p · (1− p)

A low compliance rate has a disproportionately large effect on the variance of the 2SLS es-

timator of the LATE, as the variance scales with the square of the compliance rate. Consider

two experiments evaluating the same program, one with a 10% compliance rate (π = 0.1)

and another with a perfect compliance (π = 1). Even though compliance rate in the first

experiment is only 10 times lower than in the second experiment, a sample size a 100 times

larger is needed to reach the same variance as in the perfect compliance experiment. Put dif-

ferently, suppose it were possible in the first experiment to use some observables to identify

the subpopulation of compliers. Focusing on this fraction (10%) of the population would

divide the size of the estimation sample by 10, but it would still decrease the variance by a

factor of 10, and thus significantly improve inference. In summary, even if a given experi-

ment passes some weak identification tests successfully, which it could even with relatively

low compliance rates, a low take-up rate can still significantly lower precision, possibly

leading to uninformative inference.

As a concrete example, consider the quarter-of-birth instrument in Angrist and Krueger

(1991). The instrument relies on the fact that because of compulsory schooling laws, chil-

1Here, ε is the structural error term in what is usually called the “second stage” equation, i.e., the regression of

the outcome on the treatment variable (and some controls if necessary).
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dren born at the beginning of the year are legally allowed to drop out earlier than those

born at the end of the year, which leads the former to complete fewer years of schooling

than the latter on average. However, preferences for education are likely to be highly het-

erogeneous along multiple dimensions such as parent’s income and qualifications. It is for

instance possible that children of richer parents never drop out in which case, their quarter-

of-birth has no effect on their educational attainment. More generally, there might exist

some subpopulations that do not react to the quarter-of-birth instrument, and would there-

fore not contribute to the identification of the LATE. Importantly, the existence of such

non-compliant groups is not a threat to identification,2 but their presence in the estimation

sample does reduce the precision with which the LATE is estimated. It is intuitive to drop

these groups without compliers from the estimation sample. This paper shows how to make

this strategy operational and studies its properties.

Under “standard asymptotics”,3 which lead to perfect selection of groups without com-

pliers, our estimator targets the same LATE parameter as the usual 2SLS/Wald estimator,

while providing substantial precision gains. However, such asymptotics are likely to pro-

vide a poor approximation for the behavior of our proposed estimator in finite samples.

Therefore, we study more realistic asymptotic sequences where compliance rates are al-

lowed to be “local-to-zero” for some groups,4 because such asymptotics leave room for

erroneous exclusions of groups with a non-zero share of compliers, even asymptotically.

Without any restrictions on treatment effect heterogeneity, our proposed estimator has

a first-order bias 5 for the LATE, as wrongly excluded groups could have an arbitrarily

2To be precise, such non-compliant groups do not threaten identification unless they represent the majority of

the sample. In such a case, the LATE might be weakly identified.
3The precise definition of what we call “standard asymptotics” is given in section 3.1.
4Compared to the weak instrument literature, in which such “local-to-zero” first-stages were first introduced

(Staiger and Stock, 1997), we still maintain the assumption that the overall first-stage is well separated from 0,

allowing strong identification of the LATE.
5An estimator θ̂ of a parameter θ has a “first-order” or “asymptotic” bias when the limiting distribution of

√
n ·
(
θ̂− θ

)
is not centered on 0. This does not prevent θ̂ from being a consistent estimator of θ, but indicates

that it does not converges towards θ at a
√
n-rate, which can invalidate inference based on such asymptotic

approximation. Throughout the paper, we will use the term “
√
n-rate consistency” as synonymous to asymptotic

unbiasedness, even if there terms are often times not used equivalently.
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large treatment effect. We therefore provide conditions under which the estimand that our

methodology targets is first-order equivalent to the LATE estimand. A sufficient condi-

tion for this to hold is for the the degree of treatment effect heterogeneity across groups

to be of the same order of magnitude as the sampling variation. In other words, between-

group heterogeneity is such that it would not systematically be detected in finite samples.

We discuss in detail why this is a reasonable condition in practice. We also propose a

data-splitting and cross-fitting strategy that provides valid inference despite the pre-test

our estimation strategy relies on. We investigate the finite sample properties of our pro-

posed procedure in Monte Carlo simulations. An R-package late.rest that implements

our estimator (and allows for replication of our Monte-Carlo simulations) is available at

https://github.com/simon-lowe/late.rest.6

Our paper contributes to the recent literature that has revisited IV estimation strategy in

the presence of first-stage heterogeneity in order to achieve precision gains (Huntington-

Klein, 2020, Coussens and Spiess, 2021, Abadie et al., 2022). Huntington-Klein (2020)

and Coussens and Spiess (2021) consider interacted IV approaches, where the instrument

is interacted with the covariates, which results in different weighting schemes. They show

that this can yield significant improvements in precision and finite-sample bias at the cost

of changing estimand to a convex weighted average of LATEs in the presence of treatment

effect heterogeneity. Abadie et al. (2022) similarly consider an interacted IV approach but

as in our proposed method additionally drop low-compliance groups. We differ from these

papers in that we maintain the goal of estimating the standard LATE parameter instead of a

weighted average of LATEs. Besides being more directly interpretable, the LATE parame-

ter is also generally more directly policy-relevant parameter, as it corresponds to an existing

subpopulation that can be targeted by policy-makers by using the exact same encourage-

ment device (instrument) as in the experimental setting. Our pre-test for the presence of

compliers in different subgroups of the population is also related to Bayesian approaches

to inference on the LATE. Indeed, it has been previously noted that such approaches could

yield more accurate estimates of causal parameters by specifically modelling the (hetero-

geneous) compliance behaviour along observable characteristics (Imbens and Rubin, 1997,

6As of 09/27/2023, we are still working on the optimization and development of the package, but it already

contains a functioning implementation of the estimator presented in this paper.

https://github.com/simon-lowe/late.rest
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Rubin, 1998, Imbens and Rubin, 2015). While these methods fully model the compliance

behavior, our procedure may be understood as a partial (and implicit) modelling of non-

compliance.

Our paper also contributes to the pre-testing literature (Leeb and Pötscher, 2005), by

introducing a correction method based on cross-fitting and proving some finite sample

properties using a local-to-zero approach. We also contribute to the literature on semi-

parametrically efficient estimation of the LATE parameter by pointing out that efficiency is

lost when allowing for the empirically relevant case with zero or local-to-zero compliance

in certain groups (Frölich, 2007, Hong and Nekipelov, 2010).

The remainder of the paper unfolds as follows. Section 2 presents the general framework

and introduces the proposed estimator. Section 3 develops the theoretical results, in partic-

ular, the reduction in asymptotic variance achieved by our procedure compared to the usual

2SLS estimator. Section 4 studies the finite sample properties of our proposed estimation

strategy, and compares it to alternatives. Section 5 presents an empirical application from a

natural experiment using variation in compulsory schooling laws as an instrument for ed-

ucational attainment. Section 6 then suggests some extensions. Lastly, section 7 concludes

and presents some avenues for further research on this topic.

2. FRAMEWORK AND PROPOSED ESTIMATOR

We consider a data-generating process with a super-population (Y (1), Y (0),D(1),D(0),Z,G),

where (Y (1), Y (0)) are the potential outcomes when treated or not (D = 1 or 0),

(D(1),D(0)) are the potential outcomes when encouraged or not (Z = 1 or 0), Z is the

encouragement status, and G is a discrete pre-determined covariate (assumed binary in this

section for illustrative purposes). We consider the simple yet standard case, especially in

empirical work, where the treatment D and the instrument Z are binary. We then have:

Y =D · Y (1) + (1−D) · Y (0)

D = Z ·D(1) + (1−Z) ·D(0)

We sample n independent and identically distributed observations {(Yi,Di,Zi,Gi)}1,...,n
from this super-population. We work under the standard identifying assumptions of the

LATE (Angrist et al., 1996) stated below.
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ASSUMPTION 1—LATE identifying assumptions:

1. Exclusion restriction: Y (D,Z) = Y (D)

2. Independence: (Y (1), Y (0),D(1),D(0),G)⊥ Z7

3. First Stage: E[D = 1 | Z = 1]−E[D = 1 | Z = 0]> 0

4. Monotonicity: D(1)≥D(0)

The only additional assumption compared to the standard framework is the independence

of the covariates G and the instrument Z . This is trivially satisfied for any covariates deter-

mined prior to the draw of the instrument Z . Under this set of assumptions, Angrist et al.

(1996) showed that the LATE, defined as the average treatment effect among compliers

E[Y (1)− Y (0)|D(1)>D(0)], is identified. Compliers are individuals who respond to the

instrument and therefore are defined by D(1)>D(0). The usual estimator for the LATE is

the Wald estimator (which coincides with the two-stage-least-squares (2SLS) estimator) in

our case where D and Z are binary:

Ŵaldn =

(∑
i

Zi

)−1∑
i

ZiYi −

(∑
i

(1−Zi)

)−1∑
i

(1−Zi)Yi(∑
i

Zi

)−1∑
i

ZiDi −

(∑
i

(1−Zi)

)−1∑
i

(1−Zi)Di

=
En[Y |Z = 1]−En[Y |Z = 0]

En[D|Z = 1]−En[D|Z = 0]

where En denotes the empirical mean operator.

Now consider the case where researchers have access to a binary pre-determined covari-

ate G ∈ {0,1}. By “pre-determined”, we mean that G is not affected by Z or D, as it is

determined before the realization of Z and D. Take G as an indicator for right- (G = 1)

or left-handedness(G= 0). We allow for heterogeneous shares of compliers across the two

groups, i.e., right-handed individuals might react more (or less) to the encouragement. For-

7In natural experiments, such assumption might only hold conditional on some observables. We conjecture that

some of our results could be extended to the conditional independence case without too much additional work.

We leave this for future research.
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mally:

π0 ≡ E[D(1)−D(0) |G= 0] ̸=E[D(1)−D(0) |G= 1]≡ π1.

We do not impose that both π0 and π1 are strictly larger than 0, only that the average

share of compliers in the population is well separated from 0 (assumption 1.3). In other

words, if one of the two groups is fully unresponsive to the encouragement, the other needs

to be responsive enough to allow for identification of the overall LATE. The existence

of subpopulations with few compliers8 (or no compliers at all) is what creates room for

precision gains in the estimation of the overall LATE.

Consider the extreme case where left-handed share of compliers is π0 = 0, while the

right-handed share is π1 > 0. The left-handed observations then do not bring any signal in

the estimation of the overall LATE, as none of the compliers are left-handed:

LATE= E[Y (1)− Y (0)|D(1)>D(0),G= 1] ·
=1︷ ︸︸ ︷

P[G= 1|D(1)>D(0)]

+ E[Y (1)− Y (0)|D(1)>D(0),G= 0] ·P[G= 0|D(1)>D(0)]︸ ︷︷ ︸
=0

=E[Y (1)− Y (0)|D(1)>D(0),G= 1]

They also do not prevent us from getting a consistent estimator of the LATE, as the differ-

ence in outcomes between encouraged and control left-handed individuals in the numerator

of the usual LATE estimator cancels out on average, but they do bring additional noise to

the estimation procedure, worsening the precision of the estimator:

Ŵaldn =
∆
Y |G=1
n ·Pn[G= 1] +

Mean-zero noise︷ ︸︸ ︷
∆
Y |G=0
n ·Pn[G= 0]

En[D|Z = 1]−En[D|Z = 0]

where ∆
· |G=g
n ≡ En[ · |Z = 1,G = g] − En[ · |Z = 0,G = g]. This is easily seen when

comparing the variance of a 2SLS estimator on the sample of right-handed individuals

only (VTSLS,G=1) with the one on the full sample (VTSLS), assuming homoscedasticity of

8We will formalize this vague terminology into the concept of a “local-to-zero” share of compliers, where the

compliance rate vanishes at a 1/
√
n rate(Staiger and Stock, 1997).
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the errors:

VTSLS =
1

N
· 1

(π1 ·P[G= 1])2
· σ2ε
p · (1− p)

VTSLS, G=1 =
1

N ·P[G= 1]
· 1

(π1)2
· σ2ε
p · (1− p)

= (1−Pr[G= 0]) ·VTSLS <VTSLS

where σ2ε denotes the variance of the errors,9 N is the sample size and p = E[Z] is the

share of encouraged individuals. Excluding the group without compliers (G= 0) from the

estimation decreases the variance by a factor (1− Pr[G = 0]). This is intuitive: the more

we can get rid of groups without compliers, the larger the precision gains.

This suggests the following estimation procedure (Estimator 1), which we will call the

“naive” Test-and-Select (naive TS) estimator.10

Algorithm 1 “Naive” Test-and-Select
1: For each group defined by G, do a one-sided t-test on the first-stage coefficient πg , at

a pre-specified level α, testing the null πg = 0 against the alternative π > 0 (or π < 0).

2: Keep only the groups for which we rejected the previous test.

3: Compute the usual Wald estimator on the selected sample.

Compared to our example, the main challenge lies in the need to pre-test on the first-stage

coefficients in order to determine for which groups there are no compliers. Pre-testing can

create challenges for inference (Leeb and Pötscher, 2005), and recent work underlined is-

sues with the specific procedure of pre-testing on the first-stage in IV estimation (Abadie

et al., 2022). The following lemma shows that pre-testing as suggested above and esti-

mating in the same sample will lead to a first-order bias in the estimation of the LATE

parameter.

9Here, ε is the structural error term in the “second stage” regression of the outcome on the treatment variable.

Formally: ε= Y − LATE ·D.
10Usually, in the context of RCTs, researchers will have a strong prior about the way their encouragement

affects the treatment status, justifying π > 0 (or π < 0) as an alternative hypothesis instead of π ̸= 0 (see step 2

in Estimator 1).
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LEMMA 1—Pre-testing and first-order bias in LATE estimation: Let G be a binary

covariate partitioning the population such that the share of compliers in groups G= 0 and

G= 1 are respectively given by π0 = 0 and π1 > 0. Selecting groups based on a one-sided

t-test with fixed test size on group-specific first-stage coefficients will lead to a first-order

bias in the estimation of the LATE parameter.

Lemma 1 states that there can be significant distortions due to the pre-testing step in

the suggested procedure that ultimately could lead to non-valid inference. There are two

sources of first-order bias introduced by this pre-testing procedure, as we make it clear in

the proof of lemma 1. The first is that this pre-test leads to an overestimation of the first-

stage coefficient in the group that does not contain any compliers. This will tend to shrink

the LATE estimator (in which the overall first-stage estimator appears in the denominator)

towards 0. The second source of first-order bias comes from the fact that in the group

without compliers (G = 0), we end up comparing always-takers with never-takers once

we condition on the estimated first-stage π̂0 being larger than a threshold. This is not an

issue when the expected outcomes of always-takers and never-takers are the same, as the

effect will average out. However there is no reason for these expected outcomes to coincide.

When they differ, their comparison leads to the introduction of an additional downward or

upward bias first-order bias depending on whether the expected outcome of always-takers

is larger or smaller (downward bias) than the one of never-takers.

We illustrate this bias using a Monte-Carlo simulation. Half the sample has zero compli-

ance but with large variance, while the other half has a strong compliance rate. The details

of the DGP can be found in 5. In this setting there is a significant chance to include zero

compliance groups selectively, when not using sample splitting. Table I reports the bias

and coverage rate of 95%-confidence intervals of three estimators of the LATE over 10,000

Monte-Carlo repetitions. The first column reports the performance of the 2SLS estimator,

the second column the performance of our proposed methodology with sample splitting

and cross-fitting, and the third column a “naive” version of our methodology that would

test, select and estimate the LATE in the same sample without any sample split. The results

show that the naive version of the Test-and-Select estimator exhibits a clear bias, which is

ultimately detrimental to the coverage of its associated 95%−confidence interval that fail

to cover at their nominal rate (0.828).
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Given the issues documented with the “naive” approach presented above, we propose

a modified procedure that aims at solving the problems associated with pre-testing, build-

ing on data-splitting and cross-fitting. This Test-and-Select (TS) estimation procedure is

described below (Estimator 2).

Algorithm 2 Test-and-Select
1: Divide the sample in two equally sized random subsamples I1 and I2, stratifying the

random split by G.

2: In subsample I1: For each group defined by G, do a one-sided t-test on the first-stage

coefficient πg , at a pre-specified level α, testing the null πg = 0 against the alternative

π > 0 (or π < 0).

3: In subsample I2: Keep only the groups for which we rejected the previous test in

sample I1.

4: Compute the usual Wald estimator on this selected subsample of I2.

5: Repeat steps 2 to 4 reversing the roles of I1 and I2 (cross-fitting).

6: Take the average of the estimators obtained in step 4 within I1 and I2.

The important data-splitting step happens in Steps 2 and 3 in the procedure of Estimator

2. We split the data in half randomly, and then use the first half to test for which groups

have no compliers and the second half to compute the Wald estimator without those groups

determined in the first half. The cross-fitting step then exchanges the roles of the two splits.

Our proposed methodology that associates the Test-and-Select procedure with sample

splitting and (2-fold) cross-fitting yields an unbiased estimator, and nominal coverage

(0.948) for the DGP presented in Table I.

Therefore, one of the main contributions of this work is to develop valid procedures to

implement the selection of groups with or without compliers in a given sample. In section

3 and as already introduced above, we propose to use data-splitting to fix the pre-testing is-

sues previously mentioned, and we suggest the use of cross-fitting to alleviate the efficiency

loss incurred when using data-splitting.
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TABLE I

PRE-TEST BIAS, AND THE USE OF CROSS-FITTING

2SLS Test-and-Select (with 2-fold-CF) Test-and-select (without CF)

Mean Bias 0.02 0.004 -0.13

Median Bias 0.001 0.002 -0.10

Coverage 0.950 0.948 0.828

Confidence interval length 2.00 0.60 0.55

Note: This table presents the results of a simulation using the DGP described in appendix 4, with a number of groups of 30
with around 33 observations per group. In rows, we report the mean and median bias (with respect to the LATE parameter), the
coverage rate of 95%-confidence intervals and the confidence interval length. The first column reports the performance of the
2SLS estimator, the second column the performance of our proposed methodology with sample splitting and cross-fitting, and the
third column a “naive” version of our methodology that would test, select and estimate the LATE in the same sample without any
sample split.

3. THEORETICAL RESULTS

Throughout this section, we will consider a framework with two iid samples: a test sam-

ple (denoted IT ) used to t-test on group-specific first-stage coefficients, and an estimation

sample (denoted IE) used to compute the resulting estimator with the selection rule induced

by the test results in IT . These samples can always be constructed from a full sample of size

n, by randomly splitting it with a fraction pT (respectively pE = 1− pT ) going to sample

IT (respectively IE). We will denote by nT (= pT ·n) and nE (= pE ·n) the corresponding

sample sizes. We will use the notation n→∞ to describe an asymptotic in both nE and nT
simultaneously. At the end of the section, we will consider the use of cross-fitting, where

the roles of IT and IE are reversed and the estimators are then averaged, as an attempt to

mitigate the loss of precision induced by sample splitting.

The study of the properties of our suggested estimator is divided into two parts. First, we

consider the case where covariate-defined sub-groups contain either a share of compliers

well-separated from zero, or no compliers at all. This case will simplify the study of the po-

tential precision gains derived from the suggested procedure. In a second step, we introduce

groups with a “local-to-zero” (or “weak”) share of compliers. Following Staiger and Stock

(1997), this means that the share of compliers in those groups decreases at a 1/
√
n rate, the

same order of magnitude as sampling variation. This modeling choice better approximates

finite-sample behavior of the estimator, because it allows for imperfect selection of groups
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with non-zero shares of compliers.11 As previously described, the population is partitioned

by a grouping variable G. As before, we denote by πg the share of compliers in group

G= g. Additionally, we denote by G the support of G. In order to distinguish groups with

“strong”, “weak” and zero shares of compliers, we further define:

1. GS = {all groups with strong first stage}
2. GW = {all groups with weak first stage}
3. G0 = {all groups with zero first stage}

3.1. Standard asymptotics

In this section, we work under the assumption that there are only two types of groups: the

ones without any compliers, and the ones with a strong first-stage (i.e., a share of compliers

well separated from 0).

ASSUMPTION 2—No weak first-stages: There are no groups for which the share of

compliers is local-to-zero. Formally: GW =∅.

Let S ∈ {0,1}|G| denote an arbitrary selection vector, where Sg = 1 indicates that group

G= g is selected. The selected estimator is then given by:

τ̂(S) =

 ∑
i|SGi

=1

Zi

−1 ∑
i|SGi

=1

ZiYi −

 ∑
i|SGi

=1

(1−Zi)

−1 ∑
i|SGi

=1

(1−Zi)Yi

 ∑
i|SGi

=1

Zi

−1 ∑
i|SGi

=1

ZiDi −

 ∑
i|SGi

=1

(1−Zi)

−1 ∑
i|SGi

=1

(1−Zi)Di

=
En[Y |Z = 1, SG = 1]−En[Y |Z = 0, SG = 1]

En[D|Z = 1, SG = 1]−En[D|Z = 0, SG = 1]

11An alternative modeling choice would consider a growing number of groups, so that the number of observa-

tions per group could remain stable as the overall sample size goes to infinity. In our framework we keep the share

that each group g represents in the population stable with respect to the sample size.
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In words, τ̂(S) is the Wald estimator on the subsample {i : SGi
= 1}, which is the subsam-

ple designated by S. For example, for |G|= 2,

τ̂(S) =


Ŵald if S = (1,1)

Ŵald
G=1

if S = (1,0)

Ŵald
G=0

if S = (0,1)

where Ŵald
G=g

denotes the Wald estimator computed on the observations with G = g.

We similarly denote τ̂E(S) for any arbitrary selection vector, the Wald estimator on the

subsample selected by S on the split dataset IE .

The selection vector S of interest used in our proposed procedure is determined through

group-by-group t-tests in the test sample IT .12 We will denote it by ŜT , where the hat

and subscript T indicate that this vector comes from an estimation step in sample IT . The

estimator that is used in our method is then:13

τ̂E ≡ τ̂E

(
ŜT

)
which corresponds to the Wald estimator computed on sample IE for the groups selected

on sample sample IT by the group-by-group t-tests.

We start by characterizing the asymptotic behavior of this selection procedure.

LEMMA 2—Asymptotic distribution of the selection procedure: Under assumptions 1

and 2, and if E[|Y |2] <∞, as the test sample size nT goes to infinity, the probability of

selecting groups with a first stage of 0 goes to α, the chosen level of the t-test, and the

probability of selecting groups with strong first-stages goes to 1.

REMARK 1: It would be possible to decrease the threshold of the t-test at an appropriate

rate in such a way that the probability to exclude groups with no first-stages goes to 1 as

the sample size goes to infinity. we do not consider this type of testing for our selection

12This vector stacks the |G| test decisions resulting from our |G| t-tests (one per group) in IT .
13Later in this section, we consider the use of cross-fitting, leading to the use of the “symmetric” estimator

where the roles of the two samples are inverted.
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procedure, because the resulting asymptotic approximation would likely not reflect accu-

rately what happens in finite samples where the likelihood of keeping groups with zero

first-stages would remain positive.

Lemma 2 shows that groups with strong first stages will always be selected asymptot-

ically. To study the asymptotic distribution of τ̂E(S) when both the test and estimation

sample sizes (nT and nE) tend to infinity, we can therefore look at any vector S which

selects at least all groups with strong first stages. We denote this subset of all selection

vectors that never exclude groups with strong first-stages by Sstrong ⊂ {0,1}|G| . Formally,

for any S̃ ∈ Sstrong , we have: ∀g ∈ GS , S̃g = 1.

We then have the following proposition:

PROPOSITION 3: Under assumptions 1, 2, and E[Y 2]<∞, we have:

1. ∀S ∈ Sstrong,
√
nE (τ̂E(S)−LATE)

d−→N (0, V τ̂E(S))

2. ∀S ∈ Sstrong, V τ̂E(S) ≤ V TSLS with equality iff: ∀g, Sg = 1 or in degenerate

cases

3. Using ŜT , we get: √
nE · τ̂E −LATE√

V τ̂E

d−−−→
n→∞

N (0,1)

For any realization of Ŝ denoted S ∈ Sstrong , one can build asymptotically valid con-

fidence intervals with coverage (1 − α) conditional on the realization of Ŝ in the usual

way:

CIα(S) =

[
τ̂E(S)−

√
V̂ τ̂E(S)

√
nE

· q1−α
2
, τ̂E(S) +

√
V̂ τ̂E(S)

√
nE

· q1−α
2

]
where V̂ τ̂E(S) is a consistent estimator of the asymptotic variance of τ̂E(S), and q1−α

2
is the

(1− α
2 ) quantile of the N (0,1) distribution. Those confidence intervals are asymptotically

valid by proposition 3.1, i.e.:

P[LATE ∈CIα(S)]−−−−→
n−→∞

1− α

The following corollary states that such intervals have asymptotically valid unconditional

coverage for the LATE. It also states that when the selection S is such that the asymptotic

variance of the resulting estimator is strictly lower than the one of the TSLS estimator
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(inequality case of proposition 3.2), then the length of a confidence interval conditional on

such an S is going to be lower than usual CIs based on the TSLS estimator with probability

going to 1 as n goes to infinity, reflecting the gains in terms of inference. Notice that the

asymptotic study of confidence intervals lengths requires to rescale CIs by
√
nE to allow

for a meaningful comparison.14

COROLLARY 4: Under assumptions 1 and 2, if E[Y 2] <∞ and S is such that we are

in the inequality case of proposition 3.2, then the estimators τ̂E(S) and τ̂TSLSE (the TS

estimator conditional on S and TSLS estimator computed in split IE) are such that:

lim
n→∞

P
[√

nE · length[CIα(S)]≤
√
nE · length[CITSLSα ]

]
= 1

Moreover, we have that:

P
[
LATE ∈CIα(Ŝ)

]
−→
n→∞

1− α

where Ŝ is the (random) selection vector estimated from the test data IT .

Proposition 3 and corollary 4 show that, under assumption 2 ruling out the presence of

subpopulations with weak first-stages, our procedure dominates the usual 2SLS/Wald esti-

mator for estimation of and inference on the LATE parameter. However, the use of sample

splitting is key to deriving those results, as it allows us to consider the selection process and

the estimation as independent. Additionally, the variance comparison made in proposition

3.2 between our TS procedure and the 2SLS estimator is based on a comparison of asymp-

totic variances, while the second statement of corollary 4 assumes that the sample size used

for estimation are identical when implementing our TS strategy or the usual TSLS esti-

mation approach. However, given the sample splitting step inherent to our methodology, a

fair comparison between the inference derived from the 2SLS approach and our proposed

strategy has to take into account the reduction in sample size in the our approach. The

reduced sample size lowers the gains in asymptotic variance. Consider again the same ex-

periment as in the introduction, with a 10% compliance rate in the whole population, but

14Otherwise, any confidence interval constructed in the usual way based on asymptotically normal estimators

for a point-identified parameter will have a length that shrinks to 0 (at a
√
nE rate).
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where compliers are all concentrated in half of the total population. The variance of the

estimator would be halved compared to the variance of the usual TSLS estimator,15 if the

researcher has additional data, such as a pilot sample, which they can use to test and re-

strict to the complier population. This happens because compliance rate appears squared,

such the halving of the sample size, which doubles the variance, is compensated by the

higher compliance, which divides the variance by four. However, in general, such data is

not available. In this case, the researcher will need to (randomly) split the sample into two

sub-samples to implement our methodology, which reduces the size of the estimation sam-

ple in comparison to the usual TSLS estimation. Suppose they implement a 20%-80% split

to create a test and estimation sample.16 Then instead of dividing the size of the estima-

tion sample by two (post-selection), they ends up reducing it by a factor of 4
5 ·

1
2 =

2
5 <

1
2

compared to the sample size used in TSLS estimation. Therefore, the reduction in variance

goes from a factor of 1
2 to a factor of 5

2 ·
1
4 =

5
8 >

1
2 . More generally, if the gains in variance

derived from the increased compliance rate in the selected population aren’t large enough,

they can be cancelled by the losses due to the sample split, which in the worst cases could

to an increase in variance.

Cross-fitting The example above shows that the sample splitting step is not innocuous

for precision. It is however a key step of our approach as it allows to make the testing-

selecting and estimation steps independent. As shown in lemma 1 and illustrated in Table

I, our procedure yields a biased estimator in the absence of sample splitting.

A possible solution to this problem consists in using both splits of the sample for both

the testing-selecting and estimation steps by reversing their roles. This is usually called

cross-fitting in the machine learning literature. In other words, the researcher divides the

sample in two (or more) equally-sized folds, I1 and I2. They then construct a first estimator

using I1 as the test sample and I2 as the estimation sample, and a second using I2 as the

15This is assuming homoscedasticity in order to simplify the computations for illustrative purposes, see equa-

tion 1.
16There isn’t a clear way to determine the proper splitting rule between a test and estimation sample. In princi-

ple, the test sample only needs to be large enough so that asymptotic approximations within each group are valid.

The remaining of the initial sample should be assigned to the estimation step, as the purpose of this strategy is

ultimately to improve inference.
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test sample and I1 as the estimation sample (see the description of our procedure in sec-

tion 2, Estimator 2). This way, the entire sample is used for estimation, ideally recovering

some of the losses from the sample-splitting step. Indeed, the two (or more, if more folds

are created) estimators constructed in this way benefit from the same gains in (asymptotic)

variance than the ones discussed above for the sample split estimator. Therefore averaging

those estimators can yield an estimator with the same variance than a hypothetical one con-

structed using the full sample, with an additional independent test sample used for selection.

The following lemma establishes that a sufficient condition for such gains in variance to be

restored is that the two cross-fit estimators are independent one from another.

LEMMA 5—Independence of cross-fit estimators: Under assumptions 1 and 2, two es-

timators constructed following our suggested procedure and reversing the roles of two in-

dependent samples I1 and I2 are asymptotically independent one from another.

Cross-fitting is therefore a way to restore the full variance gains described in the previous

section, despite the use of sample splitting. Indeed, the asymptotic variance of the average

of τ̂1 and τ̂2 is given by:

V

(
N (0, V τ̂1) +N (0, V τ̂2)

2

)
=
V τ̂1 + V τ̂2

4
=
V τ̂1

2

where the first equality uses the independence between the limiting distributions of τ̂1 and

τ̂2 demonstrated in lemma 5. Our cross-fitted TS estimator (τ̂1 + τ̂2)/2 therefore has an

asymptotic variance that is half the one of an estimator computed on a single split. Addi-

tionally, the sample splitting step results in a loss of a factor
√
2 in the speed of conver-

gence (compared to the speed of convergence of an hypothetical TS estimator that could

be computed on the whole sample of size n). The following theorem states that the gain

in asymptotic variance described above exactly compensate the precision loss due to the

sample split.

THEOREM 6—Efficiency gains of the cross-fitted estimator: Let τ̂CF denote the aver-

age of the test-and-select estimators built in each folds of the data (using the other folds for

the testing step). Then

√
n · τ̂CF −LATE√

V τ̂CF

d−−−→
n→∞

N (0,1), with V τ̂CF ≤ V TSLS



IMPROVING LATE ESTIMATION 19

where V τ̂CF denotes the asymptotic variance of τ̂CF , which can be consistently estimated

based on the estimators of the asymptotic variance of fold-specific estimators.

PROOF: The asymptotic normality and the inequality on asymptotic variances is a di-

rect consequence of Proposition 3 and Lemma 5, as already discussed above. Consistent

estimation of V τ̂CF merely results from the fact that the fold-specific variance estimators

are constructed in independent samples, and the continuous mapping theorem. Q.E.D.

These results are encouraging as they suggest that asymptotically there are indeed gains

in precision from testing and selecting a sub-sample with statistically significant first-

stages. However, as already documented in the statistical and econometrics literature, pre-

testing methods should be treated with caution as standard asymptotic approximations of

these procedures can often be misleading.17 In particular, our framework so far ruled out

the possibility to wrongly exclude groups with some compliers, because, by consistency of

the t-test against any (well-separated from 0) alternative, the probability to exclude such

groups from the selected sample was asymptotically zero. This is not a satisfactory approx-

imation of behavior in finite samples where groups with small shares of compliers might be

wrongly excluded by the selection procedure. Therefore, we need to extend our framework

in order to account for such cases.

3.2. Asymptotic results with “weak” first-stages

We now introduce groups with local-to-zero first-stages. Those groups have a share of

compliers that goes as 1/
√
n, so that a t-test will not systematically conclude that the first-

stage coefficient is different from zero even when thesample size goes to infinity.

ASSUMPTION 3—Weak first-stages, fixed shares and fixed conditional LATEs: There

are groups with a local-to-zero share of compliers. Formally:

∃g ∈ G s.t. πgn =
Hg

√
n
, with Hg ∈R+\{0}

All values of g for which first-stages are weak are gathered in GW .

Additionally, for any group g, the share of observations and the group-LATE are fixed (they

17For a seminal exposition to these issues, see Leeb and Pötscher (2005).
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don’t vary with n). Formally:

∀g ∈ G, ∀n, P[G= g] = pg ∈ (0,1)

E[Y (1)− Y (0)|D(1)>D(0), G= g] = lg ∈R

We maintain the assumption of a strong first-stage overall (see assumption 1):

∀n,π =

|G|∑
g=1

πgn ≥ c > 0

where c is a constant that does not depend on n. In other words, we still assume that there

are some groups with strong first-stages in the population, such that the LATE in our setting

is not weakly identified.

We start by characterizing the asymptotic behavior of the selection procedure when there

are some groups with weak first stages.

LEMMA 7—Asymptotic distribution of the selection procedure with some weak group

first-stages: Under assumptions 1 and 3, and if E[|Y 2+δ|] <∞ (for some δ > 0), as the

test sample size nT goes to infinity, the probability to select groups with 0 first stages goes

to α (the level of the t-test used), the probability to select groups with strong first-stages

goes to 1, and the probability to select groups with weak (“local-to-zero”) first-stages goes

to values in the [α, 1) range, depending on the value of the localization parameter Hg .

As in lemma 2, lemma 7 above justifies that when studying the asymptotic distribution of

τ̂E(S) as both the test and estimation sample size tend to infinity, we only consider selection

vectors S that satisfy: ∀g ∈ GS , Sg = 1 (where Sg denotes the g-th term of vector S).

This is because asymptotically, we never wrongly exclude groups with strong first-stages.

However, this is not the case for groups with weak first-stages, who are excluded with a

non-zero probability (even asymptotically) despite their non-zero share of compliers. In the

previous subsection 3.1 and its associated proposition 3, we showed that in the absence of

groups with weak first-stages, our estimator can yield precision gains without introducing

any first-order bias. The following proposition (the analog to proposition 3) shows that this

is no longer true in the presence of some groups with weak first-stages.
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PROPOSITION 8: Under assumptions 1 and 3, and if E[|Y 2+δ|]<∞ (for some δ > 0),

we have:

1. ∀S ∈ Sstrong,
18 √

nE (τ̂E(S)−LATE)
d−→N (B(S), V S)).

2. B(S) ∝ |LATEW (S) − LATE|, where LATEW (S) denotes the average treatment

effect among compliers within groups with weak first-stages that are wrongly dropped

by selection procedure S.

3. B(S) ̸= 0 if ∃j s.t. {Sj = 0∩ j ∈ GW} and LATEW (S) ̸= LATE.

Without any further assumptions on treatment effect heterogeneity, the above proposition

shows that our proposed estimator will systematically be first-order biased in the presence

of groups with weak first-stages. Indeed, the probability of wrongly excluding these groups

does not go to zero asymptotically (see lemma 7) and proposition 8.3 shows that in the

presence of such exclusion errors, the first-order bias of our procedure is non-zero. The

source of this bias is that the LATE of groups with a weak share of compliers might differ

from the LATE of groups that are kept for the estimation step. If we bundle all groups

with a weak first-stage in a single group G= 2, and all groups with a strong first-stage in

G= 1, the asymptotic bias (conditional on the event that group G= 2 is dropped from the

estimation step) would take the following form:

B =
H2 ·Pr[G= 2]

π︸ ︷︷ ︸
Sh. of compliers w/ G=2

among all compliers(×
√
n)

·
(
LATE1 −LATE2

)︸ ︷︷ ︸
Treatment effect

heterogeneity

where π ≡ P[D(1) > D(0)] is the share of compliers in the population, LATEg ≡
E[Y (1) − Y (0) | D(1) > D(0), G = g] is the LATE in group G = g and H2 is the lo-

calization parameter for the first stage in group G= 2. This expression also shows why it

“only” creates a first-order bias. Indeed, the share of compliers with G= 2 among all com-

pliers decreases at a
√
n-rate under assumption 3. Therefore, even once rescaled by

√
n,

the bias (with respect to the LATE parameter) remains bounded as long as the treatment

effect heterogeneity term
(
LATE1 −LATE2

)
is bounded.

18Recall that Sstrong is defined such that for any S̃ ∈ Sstrong , we have: ∀g ∈ GS , S̃g = 1.
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In order to better grasp the nature of the first-order bias of our estimator, corollary 9

provides sufficient conditions on treatment effect heterogeneity for our estimator to remain

first-order unbiased.

COROLLARY 9: Under assumptions 1 and 3, E[|Y 2+δ|]<∞ (for some δ > 0), and ho-

mogeneous treatment effects, we have that τ̂E(S) is first-order unbiased and asymptotically

normal, i.e.:

∀S ∈ Sstrong,
√
nE (τ̂E(S)−LATE)

d−→N (0, V S)).

Less restrictively, under assumptions 1 and 3, E[|Y 2+δ|] <∞ (for some δ > 0), and van-

ishing treatment effect heterogeneity, i.e.:

∀g ∈ GW , |LATEg −LATE|= o(1)

τ̂E(S) is also first-order unbiased and asymptotically normal.

Assuming homogeneous treatment effect is generally not a not realistic assumption, and

rather in opposition to the spirit of the LATE literature. On the other hand, vanishing treat-

ment heterogeneity might be a realistic assumption to describe the data-generating pro-

cesses studied in applied economics and social sciences in general. This type of restriction

can be motivated by the usual difficulties faced by researchers in detecting treatment effect

heterogeneity in empirical research, given the usual sample sizes at their disposal. Coussens

and Spiess (2021) also studied the properties of their proposed estimator under the related

but stronger assumption that average treatment effect in general is of the order of magnitude

of 1/
√
n. We will therefore now study the properties of our estimator under this restrictions

on treatment effect heterogeneity.

ASSUMPTION 4—First order negligible heterogeneity or noisy heterogeneity: The het-

erogeneity of conditional LATEs across groups is of the same order of magnitude as the

sampling variation. Formally:

∀g ∈ GW , |LATEg −LATE|=O(n−1/2)

The following theorem establishes the key results on the asymptotic distribution of our

estimator under this assumption.
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THEOREM 10: Under assumptions 1, 3, 4, and if E[|Y 2+δ|]<∞ (for some δ > 0), we

have:

1. ∀S ∈ Sstrong,
√
nE (τ̂E(S)−LATE)

d−→N (0, V (τ̂E(S))) with V (τ̂E(S))≤ V TSLS .

2. We have √
nE · τ̂E −LATE√

V τ̂E

d−−−→
n→∞

N (0,1)

REMARK 2: Notice that the results presented in the theorem above would hold under

the less stringent assumption of vanishing treatment effect heterogeneity:

∀g ∈ GW , |LATEg −LATE|= o(1)

instead of assumption 4. We state it under assumption 4 in the hope that relating treat-

ment effect heterogeneity to the order of magnitude of sampling variation would be more

interpretable.

Theorem 10 above establishes the
√
n-convergence of our estimator under assumptions 3

and 4. The gains in inference already studied in the absence of any weak first-stage groups

(see corollary 4) remain following the same reasoning. Compared to alternatives such as

Coussens and Spiess (2021) and Huntington-Klein (2020), our procedure is exempt of any

first-order bias under the restriction on treatment effect heterogeneity made in assumption

4, as shown in lemma 15 and its proof in appendix 2, which also contains a proof of the

bias of Coussens and Spiess (2021) procedure in our framework.19

The intuition behind the better behavior of our estimator can be given as follows. In the

absence of any restrictions on treatment effect heterogeneity, both our estimator and the

one studied by Coussens and Spiess (2021) converge to weighted averages of conditional

LATEs. Yet the estimand towards which Coussens and Spiess (2021) estimator converges

weights each LATEg by the square of the share of compliers in group g, creating possibly

large deviations from the usual LATE parameter (which weights each LATEg by the un-

squared share of compliers). Therefore, assuming that the heterogeneity across conditional

LATEs is of the order of 1/
√
n is not sufficient to compensate for the deviations from the

19Coussens and Spiess (2021) already establish the bias of the estimator they study under the assumption that

all conditional LATEs are local to zero. In lemma 4, we simply prove that their result still holds under our own

assumption that only restricts treatment effect heterogeneity to be local to zero.
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LATE created by the weighting scheme. On the contrary, our estimator’s bias in the absence

of assumption 4 is due to the failure to systematically select groups with weak shares of

compliers. This results in the conditional LATEs of these groups being weighted less than

they should to match with the overall LATE parameter. However, for our estimator, this

only affects groups with very low compliance rates, that do not represent a very large share

of the total population of compliers. Therefore, the deviation from the LATE in our case

is less important than in Coussens and Spiess (2021), and the restriction on heterogeneity

made in assumption 4 is sufficient to rule out any first-order bias. This discrepancy in the

behavior of our estimator compared to the one of Coussens and Spiess (2021) as highlights

two important points:

1. the heterogeneity restriction made in assumption 4 is not equivalent to homogeneous

treatment effects, as estimators such as the one of Coussens and Spiess (2021) that

would converge to the LATE in the homogeneous case exhibit a first-order bias under

this assumption ;

2. our estimator offers gains in variance while remaining more tightly related to the

LATE parameter than the one studied in Coussens and Spiess (2021). Hence we of-

fer another alternative in the bias-variance trade-off, from no asymptotic bias (yet

larger variance) when using TSLS to potentially larger gains in variance when us-

ing Coussens and Spiess (2021) (at the cost of a larger asymptotic bias, even under

restrictions on treatment effect heterogeneity).

Motivating assumption 4 We conclude our discussion by providing an argument that

assumption 4 can be justified in empirical settings. When implementing an encouragement

desigb, it is common practice is to choose the sample size to be able to detect a given

magnitude of effect κ% of the time (where κ = 80 is the usual choice). This “minimum

detectable effect” (MDE, often denoted e∗) sometimes coincides with what researchers

deem to be an economically significant effect, and/or the magnitude of effects typically

measured in the literature. The usual formula to express this e∗ as a function of the sample

size if the following:

e∗ =

√
σ2

n ·E[Z] · (1−E[Z])
· 1

E(D | Z = 1)−E(D | Z = 0)
·
(
q1−α

2
+ qκ

)
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where we assumed Var[Y (0)] = Var[Y (1)] = σ2, and qx is the xth-quantile of a N (0,1).

Therefore, in studies designed based on power analyses, we have by design: e∗ =O(n−1/2).

The true effect (and treatment effect heterogeneity) can be larger than e∗, in which case our

study will systematically detect the effect of the policy (and its heterogeneity). But as has

been document using meta-analyses in for instance Ioannidis et al. (2017), social sciences

(and economics in particular) are generally under-powered rather than over-powered. Ex-

perimenters in social sciences certainly do not detect 100% of the time significant effects

(and even less often treatment effect heterogeneity). It is therefore plausible that most of

the time, the true effects (and true heterogeneity) is of the same order of magnitude as the

MDE of the study designed to detect them. In such a case, assumption 4 would be fulfilled.

4. SIMULATIONS

This section presents a simulation study that compares the performance of the various

estimators mentioned above: the standard 2SLS estimator, our proposed Test-and-Select

estimator, Huntington-Klein (2020)’s interacted IV estimator and Coussens and Spiess

(2021)’s compliance-weighted IV estimator. We consider a number of Data Generating Pro-

cesses (DGPs) that vary the degree of heterogeneity in compliance and treatment effects,

and the correlation between conditional LATEs E[Y (1)− Y (0)|D(1)>D(0), G= g] and

compliance rates πg .

DGP parameters We follow Coussens and Spiess (2021) in using the threshold cross-

ing model representation (Vytlacil, 2002), but differ importantly by introducing parameters

which control the correlation between conditional LATEs E[Y (1)− Y (0)|D(1)>D(0), G= g]

and compliance rates πg . These are important because it is precisely the condition leading

to a first-order bias in our estimation strategies, and is therefore important to illustrate when

these methods fail. The details of the DGP are presented in Appendix 4.

The Monte Carlo simulations are ultimately governed by the following set of parameters:

1. N : Sample size

2. J : Number of groups

3. SAT , SNT : Fraction of always-takers and never-takers in the population, respectively

4. ρδε: correlation between latency to treat and baseline untreated potential. Controls

selection into treatment and hence the necessity for instrumentation.
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5. σ2η : Controls how good of a predictor the groups are for compliance

6. α,β: Control the dependence between treatment effect and compliance as well as the

overall treatment effect heterogeneity

For both DGPs we present below, most of these parameters are fixed:

DGP1 ≡
(
N = 1000, J = 10, SAT =SNT =

0.75

2
, ρδε = 0.5, α= 0.5

)
In other words, we are studying are considering a sample size of 1,000 observations, parti-

tioned into 10 groups, with an overall compliance rate of 25%. The other important feature

of this DGP, encoded by α = 0.5, is that there is a significant correlation between com-

pliance and treatment effect. This is significant because it is the type of treatment effect

heterogeneity that can generate bias with respect to the LATE in the alternative estimation

procedures that have been proposed in the literature (Huntington-Klein, 2020, Coussens

and Spiess, 2021, Abadie et al., 2022). In the absence of such correlation, there is no threat

of bias for our estimator or these alternatives.

In the simulations below, we focus on two important aspects. The first is the presence of

groups without compliers and how well it is predicted by the covariates, controlled by the

σ2η parameter. This is the most important parameter because it controls whether the methods

can be expected to result in any improvements. The second is the strength of the overall

treatment effect heterogeneity, controlled by the β parameter. This parameter controls the

bias the methods will exhibit.

We will therefore present 2 classes of DGPs. The first DGP (DGP1) illustrates the good

properties of our test-and-select estimator in a best-case scenario for our estimator, with

many groups with 0 compliance alongside groups with large (“strong”) first-stages. Besides

demonstrating the potential gains in precision compared to the standard 2SLS estimator, it

also highlights the robustness of our estimator to patterns of treatment effect heterogeneity

that would bias other alternatives from the literature. On the other hand, the second DGP

(DGP2) has no groups with 0 compliers, but several groups with weak first-stages. This is

a setting in which (i) we do not expect significant gains in precision from our estimator and

(ii) our selection procedure could lead to some bias depending on the amount of treatment

effect heterogeneity. Therefore, this second DGP illustrates the robustness of the different
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methodologies to levels of treatment effect heterogeneity in an adverse DGP the methods

are not expected to generate any gains in precision.

DGP1: a “best-case scenario” The parameters for the first DGP are the following:

DGP1 ≡
(
ση = 0.01, β ∈ {1,2,3,4,6,10,20,40,80}

)
It generates the following distribution of compliance rates in the J = 10 groups created:

πG = (π1 = π2 = π3 = π8 = π9 = π10 = 0, π4 = π7 ≈ 0.25, π5 = π6 ≈ 0.99)

with an overall compliance rate of 25%. DGP1 is an ideal application for our method,

because 60% of groups have no compliers and the other groups have large compliance

rates.

We run a Monte-Carlo simulation with 10,000 repetitions. The results are shown in the

panels of figure 1. We vary treatment effect heterogeneity, and quantify the latter on the x-

axis by scaling the standard deviation of Y (1)− Y (0) by the Minimum Detectable Effect

(MDE):

x=

√
V (Y (1)− Y (0))√

V (Y (1)) + V (Y (0))

0.5 · n
· q0.975 + q0.8

π

where qx represents the quantile function of a normal distribution. This re-scaling allows a

meaningful quantification of treatment effect heterogeneity, by relating it to a quantity (the

MDE) that (i) is a well-known object to most empiricists and, (ii) varies with the sample

size at a 1/
√
n rate. A key result in section 3 is that our estimator exhibits no first-order

bias of our estimator when treatment effect heterogeneity is of the order of 1/
√
n, which

highlights its robustness to moderate treatment effect heterogeneity. As the MDE is of order

1/
√
n, it is a natural to quantify the level of heterogeneity, and therefore the likelihood of

bias.

Figure 1 presents the bias, length and coverage of 95%-confidence intervals, and RMSE

of the different estimators considered in these simulations under DGP1. Panel 1a highlights

the low bias of our estimator up to very large levels of treatment heterogeneity. As expected,

estimators based on interacted of weighted instruments display much larger amounts of bias

at any level of treatment effect heterogeneity (except zero). Panel 1c shows that translates
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to poor coverage rates for these estimation strategies, while ours covers at the nominal level

for any amount of treatment effect heterogeneity.

Moreover, panel 1b highlights the large decrease in confidence interval length (for all

alternative estimation methods) compared to the standard 2SLS. For this DGP, our estima-

tion procedure generates significant gains compared to the standard 2SLS estimator, but as

expected, the other estimators generate even larger gains in precision. Panel 1d shows that

in this case, our method has the lowest RMSE, showing that the lower bias outweighs the

precision gains.

DGP2: introduction of “weak” compliance groups The parameters for the first DGP

are the following:

DGP2 ≡
(
ση = 0.5, β ∈ {1,2,3,4,6,10,20,40,80}

)
It generates the following distribution of compliance rates in the J = 10 groups created:

πG = (π1 = π10 ≈ 0.001, π2 = π9 ≈ 0.08, π3 = π8 ≈ 0.24, π4 = π7 ≈ 0.40, π5 = π6 ≈ 0.5)

with an overall compliance of 25%. In contrast, to the first DGP, this DGP does not feature

any groups without compliers. Instead, it introduces several “weak” compliance groups,

which are (as studied in 3) the main source of bias for our estimator.

As before, we run a Monte-Carlo simulation with 10,000 repetitions. The results are

shown in the panels of figure 2 as a function of the MDE. Compared to what we observed

in DGP1, panel 2a highlights a much larger bias of our procedure, that grows as treat-

ment effect heterogeneity increases, as expected from our theoretical results from section

3. However, it remains significantly lower than the bias of the alternatives estimators. As be-

fore, all these alternatives have lower variance than our method, yielding shorter confidence

intervals, as shown in panel 2b. However, because of the bias, these shorter confidence in-

tervals yield significantly worse coverage properties than our estimator as shown in panel

2c.

As demonstrated in section 3 our estimator remains unbiased to first-order when treat-

ment effect heterogeneity is moderate, but such a property does not guarantee unbiasedness

in finite samples which can clearly be observed in panel 2a. However it allows for valid in-

ference as long as treatment effect heterogeneity remains moderate, which is precisely what
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(a) Bias (b) Length of 95% confidence interval

(c) Coverage of 95% confidence interval (d) Root mean square error

FIGURE 1.—Comparison of estimators with varying treatment effect heterogeneity for DGP1. This panel shows

the results of a 10,000 repetitions of a Monte-Carlo simulation of DGP1, described in the text. Four different

estimators are considered: the standard 2SLS estimator in red, our proposed Test-and-Select estimator with cross–

fitting using 2 folds in blue, the re-weighted IV approach suggested by Coussens and Spiess (2021) in green and

the interacted IV approach suggest by Huntington-Klein (2020) in purple.
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can be seen in panel 2c. As treatment effect heterogeneity grows, the coverage of our esti-

mator remains at its nominal level at least up to a heterogeneity of the order of the MDE,

and only starts deviating slowly after. On the contrary, the alternative estimators deviate

from nominal coverage rapidly. Lastly, panel 2d shows that the ordering of estimators in

terms of RMSE is ambiguous, depending on the level of treatment effect heterogeneity. The

RMSE criterion is less interest to us in this paper as the goal is to provide an estimator with

little bias with valid inference.

5. APPLICATION TO A NATURAL EXPERIMENT ON COMPULSORY SCHOOLING LAWS

In this section, we apply our proposed methodology to the return to schooling literature,

which studies whether an extra year of schooling affects later life outcomes such as wages.

In particular, we look at a well-studied natural experiment which uses variation in compul-

sory schooling laws across states and across time as an instrument for years of schooling

(see for instance Acemoglu and Angrist (2006), Oreopoulos (2006), Stephens and Yang

(2014)).

We analyze public-use Census-data provided by Stephens and Yang (2014). We use the

interaction between demographic controls (ethnicity × sex) × US census division × survey

year (1960, 1970, 1980) as our main covariate and then exclude from the sample the cells

without variation in compulsory schooling laws. We discretize the instrument (to having

more than 7 years of remaining compulsory years of schooling at age 6) and the treatment

(to having at least some high-school education). More details on the exact restrictions can

be found in 5.

In Table II, we report the probability that a G-cell is selected by demographic group. As

expected from the observation of Stephens and Yang (2014) that ethnic minorities tend to

react less to the compulsory schooling laws instrument, our test-and-select procedure based

on a one-sided t-test on the first stage coefficient tends to select groups of white individuals.

Table III compares the result of the standard 2SLS approach and our proposed Test-and-

Select estimator with two different levels for the pre-test (0.05 and 0.01), without covariate

controls. The point estimate of the 2SLS estimator (1.861) differs from the ones of the TS

estimators (1.470 and 1.302), but the the standard errors associated to the TS estimators are

reduced by around 12%.
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(a) Bias (b) Length of 95% confidence interval

(c) Coverage of 95% confidence interval (d) Root mean square error

FIGURE 2.—Comparison of estimators with varying treatment effect heterogeneity for DGP2. This panel shows

the results of a 10,000 repetitions of a Monte-Carlo simulation of DGP2, described in the text. Four different

estimators are considered: the standard 2SLS estimator in red, our proposed Test-and-Select estimator with cross–

fitting using 2 folds in blue, the re-weighted IV approach suggested by Coussens and Spiess (2021) in green and

the interacted IV approach suggest by Huntington-Klein (2020) in purple.
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TABLE II

SELECTION PROBABILITY OF G-CELLS, BY DEMOGRAPHIC GROUP

Selection probability (α= 0.05) Selection probability (α= 0.01)

Non-white female 0.39 0.28

Non-white male 0.44 0.33

White female 0.72 0.61

White male 0.67 0.61

Note: G is a partition of the population along demographic controls (ethnicity × sex) × US census division × survey year
(1960, 1970, 1980), which defines 108 cells, 72 of which are kept in the analysis. This table presents the probability that a cell
involving a given demographic group is dropped from the estimation sample once we select based on a one-sided t-test with level
0.05 (first column) or 0.01 (second column).

TABLE III

COMPARISON OF ESTIMATION METHODS WITHOUT COVARIATE CONTROLS

2SLS Test-and-Select (0.05) Test-and-Select (0.01)

1.861 1.470 1.302

(0.365) (0.320) (0.312)

[1.145, 2.578] [0.843, 2.098] [0.691, 1.913]

First-stage coef. 0.523 0.518 0.513

%. sample drop. 0 28.6 32.7

N 171096 122150 115159

Note: Standard errors (clustered at the demographic control (ethnicity × sex) × birth state × year of birth level) in parenthesis,
95% confidence intervals in brackets. We report estimates of the effect of having some high-school education (or more) on log
weekly earnings.

Simply comparing the results of our estimator in table III with the Interacted IV ap-

proach would be uninformative because it controls linearly for covariates in the second-

stage. However, controlling for G linearly can result in estimators (2SLS and TS) not tar-

geting the LATE estimand anymore. 20 This is highly likely to be the case in this context as

the instrumental variable conditions are more likely to hold conditionally. In order to ensure

20In fact, sometimes they could even target a parameter that is a non-convex weighted average of conditional

LATEs (Słoczyński, 2022). To be precise, under both assumptions of (i) monotonicity and (ii) complete random-

ization of Z (i.e., Z is independent of the potential outcomes and ofG), controlling linearly forG does not change

the targeted parameter (compared to the situation where we do not control at all for G). However, in natural or

stratified experiments, it could very well be that the distribution of Z varies across along G. In this case (where
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TABLE IV

COMPARISON OF ESTIMATION METHODS WITH COVARIATE CONTROLS

Frölich (2007) TS (0.05) TS (0.01) Interacted IV Interacted IV

& Frölich (2007) & Frölich (2007) & Select (0.05)

0.907 0.791 0.776 1.348 1.149

(1.16) (0.604) (0.576) (0.182) (0.149)

[−1.367, 3.181] [−0.392, 1.975] [−0.353, 1.905] [0.991, 1.705] [0.858, 1.441]

First-stage coef. 0.064 0.094 0.097 0.088 0.103

%. sample drop. 0 28.6 32.7 0 28.6

N 171096 122150 115159 171096 122150

Note: Standard errors (clustered at the demographic control (ethnicity × sex) × birth state × year of birth level) in parenthesis.
We report estimates of the effect of having some high-school education (or more) on log weekly earnings.

that our estimator still targets the LATE (even before applying our TS methodology), we

use an estimator suggested by Frölich (2007), which controls for G non-parametrically.21

We report the results of this comparison in table IV. As expected, the resulting point

estimates differ significantly from the ones previously documented in table III. Still, in this

application, our procedure yields considerable variance gains from 1.16 to 0.604, a reduc-

tion by around 48% of the standard errors. The variance of the TS estimator remains larger

than the one of the interacted IV estimators in this application. However the point estimates

of these differ significantly more from the standard Frölich point estimate, suggesting larger

bias and incorrect inference.

6. EXTENSIONS

In this section, we present some possible extensions. We start by discussing how to apply

our methodology when covariates are high-dimensional, including the case of continuous

covariates. We then discuss a possible re-weighting strategy, which weights groups by their

probability of having compliers. Finally, we consider a breakdown analysis which provides

a measure of robustness to treatment effect heterogeneity using worst-case bias bounds.

the second assumption does not hold anymore), the linear control for G yields an estimator of a convex weighted

average of conditional LATEs, yet with different weights than the natural ones.
21At this stage, this paper does not include a formal discussion of the variance gains of the TS procedure when

coupled with the Frölich estimator, but we believe that our results continue to hold.
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High-dimensional groups Assuming covariates can define groups with weak/0 share of

compliers is arguably more credible when covariates are high dimensional (e.g., when there

is a large number of covariates, interactions between covariates, continuous covariates etc.).

We now sketch how to adapt our procedure to this setting. We maintain the assumption of

strong identification overall, i.e. π > 0. We then follow Chernozhukov et al. (2021) with

slight modifications:

1. Build a flexible prediction of conditional compliance rate s(X)≡ E[D(1)−D(0)|X],

denoted ŝ(X). There is no assumption on the rate of convergence of ŝ(X). The goal

is merely that ŝ(X) contains some signal for the true s(X).

2. Define Ḡ (a fixed number) groups based on quantiles of ŝ(X), and partition the pop-

ulation into Ḡ groups: {Iŝ(x)∈[qg−1,qg]}g∈{1,...,Ḡ}

After this procedure, we are back in a situation with discrete covariates where our method

can be applied.

The direct approach as described above suffers from a potential bias, related to the fact

that ŝ(X) is created using the same data that is afterwards used for estimation of the LATE.

Chernozhukov et al. (2021) solve this problem by introducing a variational approach, which

relies on repeated data-splits. This approach does not work in our case since it does not

allow classifying each observation into one group, as the latter changes with each split.

We therefore suggest a single data-splitting and cross-fitting procedure, where the ŝ(X) in

the first split is computed using data from the second split and vice versa. It is important

for researchers to commit to a single split to avoid p-hacking. This procedure does not

entirely solve the potential correlation problem, but in large enough samples this should be

negligible.

Re-weighting strategy Instead of taking a binary decision to either drop or include

groups in the estimation sample, an alternative could be to re-weight groups based on their

probability to have a zero share of compliers. This probability is directly given by the p-

value associated to the t-test we were using so far for the selection decision. Our main

results might still hold for such weighted estimators since (asymptotically) groups with

strong first-stages would have Pr[sh. of compliers = 0|g ∈ GS ] that goes to 0, and therefore

a weight that goes to 1 as in our proposed estimation strategy. Alternatively, it is possi-

ble that such this procedure could be motivated by a model-selection framework in which
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we optimally trade-off bias and variance (to minimize RMSE) by taking weighted aver-

ages of LATE estimators estimated on the full sample—lower bias, higher variance—or

on a sample selected based on group-specific first-stage coefficients—higher bias, lower

variance—in the spirit of Claeskens and Hjort (2003) and Kitagawa and Muris (2016).

Notice that this would still be distinct from Coussens and Spiess (2021) “weighted-IV”

approach, as our weights would tend to 1 and be uniform among all groups with a strong

first-stage. This way, we could still hope that changes in the targeted estimand remain

negligible under restrictions on treatment heterogeneity of the type described in assumption

4, which is not the case for the “weighted-IV” approach (see lemma 15).

Breakdown analysis Instead of relying on an assumption of the type of assumption 4,

we sketch a procedure to correct inferential statements on our estimator for worst-case bias

under a sensitivity parameter corresponding to the maximal LATE heterogeneity across

groups.

We proved in section 3 that the bias of our estimator with respect to the original LATE

(on the whole population) has the following expression:

B =P[G= 2|D(1)>D(0)] ·
(
LATE2 −LATE1

)
where G = 2 denotes the population not selected, G = 1 the selected population, and

LATE1and LATE2 the LATEs within those two populations—i.e., LATE1 denoted the

estimand targeted by our procedure.

As LATE1and LATE2 depend on the realization of the sample, in what follows we con-

dition on the sample realization.22 The quantity P[G = 2|D(1) > D(0)] can be estimated

by 2SLS as suggested in Abadie (2003). Since by construction ofG= 2, Z is a weak instru-

ment for D in this subpopulation, P[G= 2|D(1)>D(0)] cannot be consistently estimated.

However, an asymptotically valid (1− α)-confidence interval can be constructed using for

instance inversion of an Anderson-Rubin statistic.

Suppose we construct 99%-confidence interval around P[G= 2|D(1)>D(0)], and take

the upper bound of this quantity, denoted ÛB
P

. The bias term B is increasing in P[G =

22In other words, LATE1 and LATE2 become estimands that are sample-dependent. This is not an issue

as ultimately, this sensitivity analysis will still be related to an estimand that is sample-independent, namely the

LATE in the whole population.
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2|D(1)>D(0)], hence the worst-case bias can be obtained by replacing P[G= 2|D(1)>

D(0)] with ÛB
P

. The bias is then determined by
(
LATE2 −LATE1

)
≡M , which we

now take as the sensitivity parameter. For a given value of M , the worst-case bias of our

proposed estimator for the LATE is given by M · ÛB
P

. We can construct a confidence

interval that is (asymptotically) valid with a 95% coverage for the overall LATE parameter

by widening 96%-confidence interval around LATE1, the effect among compliers in the

population selected by our procedure, by ±M · ÛB
P

original confidence intervals.23.

This procedure then allows to conduct a “breakdown” analysis which consists in deter-

mining how the confidence intervals vary with M . In particular, it allows determinination

of the value of M , the LATE treatment heterogeneity, for which a threshold value, for in-

stance zero, ceases to be included in the confidence interval. This provides a measure of

robustness to treatment effect heterogeneity of our proposed estimation strategy.

7. CONCLUSION

In this paper, we study a simple and intuitive way to exploit heterogeneity in compli-

ance rates along observable characteristics in order to improve the estimation of the LATE

in experiments with imperfect compliance. We first show that when the groups with no-

compliance are known, the corresponding oracle estimator targets the same LATE estimand

with significantly less variance. These properties extend to a feasible estimator that identi-

fies zero compliance group by t-testing the first-stage coefficients as we consider standard

asymptotic sequences in which compliance rates per group are either zero or fixed with n

and well-separated from 0. These sequences are unlikely to provide a credible approxima-

tion for the finite-sample behavior of our estimator. We therefore next consider weak-IV-

like asymptotic sequences in which some groups display local-to-zero compliance rates,

which allows exclusion errors even asymptotically. We show that a restriction on treatment

effect heterogeneity is a sufficient condition for our estimator to remain first-order unbi-

ased with respect to the LATE under such asymptotic sequences. We discuss the validity of

this restriction in applied work and compare the performance of our estimator to alterna-

23Indeed, our worst-case bias estimate is only valid with probability 0.99, as it is based on the upper bound of a

99%-confidence interval on P[G= 2|D(1)>D(0)]. Therefore, using 96%-confidence interval around LATE1,

we get a confidence interval that has coverage equal to 0.99× 0.96 = 0.9504.
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tive procedures recently proposed in the literature, which exploit first-stage heterogeneity

differently from us. The main takeaway from this discussion is that our estimator yields a

different variance-bias trade-off than other proposed alternatives in the literature. It is less

biased, because it is more robust to treatment effect heterogeneity, but at the cost of poten-

tially smaller variance gains. Finally, we illustrate the potential gains our estimator brings

in Monte-Carlo simulations and an application to a natural experiment in education.

The econometrics literature on the use of first-stage heterogeneity in LATE estimation

is currently very active and with many promising research avenues. In a follow-up project

(joint with X. D’Hautefœuille), we flip the perspective of this paper and study what impos-

ing bounds on the LATE by group can yield in terms of precision gains. Another related

research avenue we are planning on investigating in future research is how to incorporate

heterogeneity in compliance when designing experiments with imperfect compliance.

APPENDIX A: PROOF OF MAIN RESULTS

PROOF OF THEOREM 10.1: Lemma 14 and proposition 8 show that for all possible val-

ues of the selection vector S in Sstrong—that is, all the values that the random vector Ŝ

(determined in sample IT ) takes with non-zero probability asymptotically—the asymptotic

bias of
√
nE (τ̂E(S)−LATE) is of the form:

C ·
(
LATEGS

W −LATEGS
)

where C denotes a finite constant, LATEGS
W denotes the LATE among groups with a weak

first-stage that are selected according to S, and LATEGS denotes the LATE among groups

with a strong first-stage (always selected for S ∈ Sstrong). A sufficient condition for this

asymptotic bias to be negligible is assumption 4, that implies: LATEGS
W − LATEGS =

o(1). Under this assumption, we have:

∀S ∈ Sstrong, B(S) = 0

Hence the first result. Notice further that under assumption 4, groups g ∈ GWIV can be

treated essentially in the same way as groups g ∈ G0. Indeed, one can redefine the target

estimand as LATE +B(S)—which is first-order equivalent to LATE under assumption

4—and the influence function of τ̂E(S) has naturally the same form as the one studied
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in 3. Hence following the reasoning of the proofs of proposition 3.1 and 3.2—yet using

appropriate central limit theorem for triangular arrays (Lindeberg-Feller CLT) instead of

the standard CLT—we get:

V τ̂E(S) ≤ V TSLS

Q.E.D.

PROOF OF THEOREM 10.2: The proof follows the exact same line of reasoning as in the

proof of 3.3, yet making use of assumption 4 and its implication in theorem 10.1 to get the

result. Indeed, the proof relies on the consistency of τ̂E(S) for any S ∈ Sstrong , which (in

the presence of groups with weak first-stages) is guaranteed under assumption 4 as shown

above in the proof of theorem 10.1.

Q.E.D.
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1. PROOFS OF MAIN LEMMAS AND PROPOSITIONS

PROOF OF PROPOSITION 3.1: We’ll closely follow the proof of lemma 13, that presents

the asymptotic distribution of the usual 2SLS/Wald estimator. The steps are essentially

identical, but for an additional conditioning on SGi
, the selection dummy indicating

whether the covariate-based group individual i belongs to (denoted by Gi) has been se-

lected. This is indicated in vector S ∈ {0,1}|G|. SGi
is merely the Gth

i line of the vector S.

Let us also use the following notation:

• GS = {all groups with strong first stage}
• G0 = {all groups with zero first stage}

Notice that Propositions 3.1 and 3.2 are developed under a conditioning on the value of

the selection vector S. This is key to our reasoning, as this conditioning allows us to study

separately the randomness of the estimation sample, and the one coming from the selection

step.

Consider a given (fixed, deterministic) selection process S ∈ Sstrong. We know that asymp-

totically, it cannot be that a group with a strong first-stage is not selected. Hence there are

only two main cases we need to consider:

1. {∀g ∈ GS , Sg = 1} ∩ {∀g ∈ G0, Sg = 0}
2. {∀g ∈ GS , Sg = 1} ∩ {∃g ∈ G0, Sg = 1}
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The various components of τ̂E(S) are:

Â=

(∑
i

ZiSGi

)−1∑
i

ZiSGi
Yi, A=E[Y |Z = 1, SG = 1]

B̂ =

(∑
i

((1−Zi)SGi
)

)−1∑
i

(1−Zi)SGi
Yi, B =E[Y |Z = 0, SG = 1]

Ĉ =

(∑
i

ZiSGi

)−1∑
i

ZiSGi
Di, C =E[D|Z = 1, SG = 1]

D̂ =

(∑
i

((1−Zi)SGi
)

)−1∑
i

(1−Zi)SGi
Di, D =E[D|Z = 0, SG = 1]

hence LATE =
A−B

C −D
and τ̂E(S) =

Â− B̂

Ĉ − D̂

Notice that the fact that LATE = A−B
C−D comes from the fact that no matter the selection

procedure S ∈ Sstrong considered, the only groups that might be excluded are groups with-

out any compliers. Therefore we get:

LATE= E[Y (1)− Y (0)|D(1)>D(0), SG = 1] ·
=1︷ ︸︸ ︷

P[SG = 1|D(1)>D(0)]

+ E[Y (1)− Y (0)|D(1)>D(0), SG = 0] ·P[SG = 0|D(1)>D(0)]︸ ︷︷ ︸
=0

=E[Y (1)− Y (0)|D(1)>D(0), SG = 1]

=
E[Y |Z = 1, SG = 1]−E[Y |Z = 0, SG = 1]

E[D|Z = 1, SG = 1]−E[D|Z = 0, SG = 1]
(by standard identification result for LATE)

In exactly the same way as the proof of lemma 13, we have:

ai =
ZiSGi

(Yi −E[Y |Z = 1, SG = 1])

E[ZS]
bi =

(1−Zi)SGi
(Yi −E[Y |Z = 0, SG = 1])

E[(1−Z)SG]

ci =
ZiSGi

(Di −E[D|Z = 1, SG = 1])

E[ZSG]
di =

(1−Zi)SGi
(Yi −E[D|Z = 0, SG = 1])

E[(1−Z)SG]

Therefore we get:

ψτ̂E(S),i =
(ai − bi)−LATE · (ci − di)

Ci −Di
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=
1

pC,SG=1

(
ZiSGi

(Yi −E[Y |Z = 1, SG = 1])

E[ZSG]
−

(1−Zi)SGi
(Yi −E[Y |Z = 0, SG = 1])

E[(1−Z)SG]

−LATE ·
(
ZiSGi

(Di −E[D|Z = 1, SG = 1])

E[ZSG]
−

(1−Zi)SGi
(Di −E[D|Z = 0, SG = 1])

E[(1−Z)SG]

))
=

1

pC,SG=1

(
1

E[ZSG]
ZiSGi

· (εi −E[ε|Z = 1, SG = 1])− 1

E[(1−Z)SG]
(1−Zi)SGi

· (εi −E[ε|Z = 0, SG = 1])

)
where ε≡ Y − LATE ·D is the structural error term of the second stage, and pC,SG=1 =

E[D(1)−D(0)|SG = 1] is the share of compliers among the selected. As expected from an

influence function, one can check that E[ψτ̂(S),i] = 0. It follows that asymptotically,√
n(E)(τ̂E(S)−LATE)

d→N (0, V τ̂(S))

where V τ̂(S) = V (ψτ̂E(S),i) equals:

V (ψτ̂E(S),i) =E[ψ2
τ̂E(S),i]

=
1

p2C,SG=1

(
1

E[ZSG]
E[(ε−E[ε|Z = 1, SG = 1])2|Z = 1, SG = 1]

+
1

E[(1−Z)SG]
E[(ε−E[ε|Z = 0, SG = 1])2|Z = 0, SG = 1]

)
We also have Z ⊥ SG (because Z ⊥ G and S is deterministic as we condition on it), so

that:

E[ZSG] = p · pSG

E[(1−Z)SG] = (1− p) · pSG

π = pC,SG=1 · pSG + pC,SG=0 · (1− pSG) = pC,SG=1 · pSG

⇒ V (ψτ̂E(S),i) =
pSG
π2

(
1

p
E[(ε−E[ε|Z = 1, SG = 1])2|Z = 1, SG = 1]

+
1

1− p
E[(ε−E[ε|Z = 0, SG = 1])2|Z = 0, SG = 1]

)
where pSG ≡ Pr[SG = 1]. Q.E.D.

PROOF OF PROPOSITION 3.2: From lemma 13, and from proposition 3.1 we have that:

V TSLS =
1

π2

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)
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V τ̂(S) =
1

π2

(
pSG
p
V [(ε|Z = 1, SG = 1] +

pSG
1− p

V [(ε|Z = 0, SG = 1]

)
Therefore, we only need to prove that:

V [ε|Z = z]≥ pSG · V [ε|Z = z,SG = 1]

This is proven below:

V (ε|Z = z) =E [V (ε|Z = z,SG)|Z = z] + V (E [ε|Z = z,SG] |Z = z)

≥E [V (ε|Z = z,SG)|Z = z]

≥ pSG · V (ε|Z = z,SG = 1)

where the first equality follows from the law of total variance, and first and second inequal-

ities follow from the fact that variances are always positive or null (in degenerate cases).

Therefore, V TSLS has been shown to be a linear combination (with positive coefficients) of

terms greater or equal than the ones appearing in V τ̂(S), proving the proposition 3.2. Q.E.D.

PROOF OF PROPOSITION 3.3: In order to properly study the asymptotic distribution of

τ̂E = τ̂(ŜT ), we need to take a step back and study the distribution of ŜT , the vector of

selection indicators estimated in the test sample IT . We can focus on any single indicator

ŜT,g , the gth line of vector ŜT , which is defined as follows:

ŜT,g ≡ 1

π̂g(T ) > σ̂π
g√

ng
(T )

· q1−α


where ng

(T )
is the number of observations in group g in sample IT , π̂g

(T )
is the (difference

in means) estimator of the first-stage in group g, and σ̂π
g

is a consistent estimator of the

(asymptotic) variance of π̂g
(T )

. Notice that π̂g
(T )

is asymptotically linear, as following lemma

11 we have:√
ng
(T )

· [π̂g − πg]

=
√
ng
(T )

·


∑
i

ZiDi∑
i

Zi
−

∑
i

(1−Zi)Di∑
i

(1−Zi)
− (E[D | Z = 1]−E[D | Z = 0])
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=
1√
ng
(T )

·


ng
(T )∑
i=1

(
Zi (Di −E[D | Z = 1]

E[Z]
+

(1−Zi) · (Di −E[D | Z = 0])

1−E[Z]

)
︸ ︷︷ ︸

≡ψ̃g
i



=
1√
ng
(T )

·
ng
(T )∑
i=1

ψ̃gi

Our estimator τ̂E depends on the selection variables stacked in ŜT . Indeed, we have:

√
n(E)(τ̂T −LATE) =

1√
n(E)

∑
i

ψτ̂E ,i

where the expression of the influence function is given by:

ψτ̂E ,i =
1

pC,ŜT,G=1

(
1

E[ZŜT,G]
ZiŜT,Gi

· (εi −E[ε|Z = 1, ŜT,G = 1])

− 1

E[(1−Z)ŜT,G]
(1−Zi)ŜT,Gi

· (εi −E[ε|Z = 0, ŜT,G = 1])

)

The above display makes it clear that the ψτ̂E ,i’s of individuals within a given group g are

dependent, as they all depend on ŜT,G, the selection indicator computed in the test sample

IT . However, the fact that this variable is computed in a different sample allows us to dis-

entangle the randomness of τ̂T conditional on the selection vector ŜT , and the randomness

of the selection process ŜT itself. Conditioning on the selection vector ŜT re-establishes

independence across the ψτ̂E ,i’s, and we are back to the case studied in proposition 3.1 and

3.2. Now let us define:

T̂E ≡√n(E) ·
τ̂E −LATE√

V τ̂E

where V τ̂E is the asymptotic variance of τ̂E . Now, turning to the study of the characteristic

function of T̂E conditional on ŜT , we have:

E[eitT̂E |ŜT ] =
∑

S∈{0,1}|G|
1{Ŝ = S} ·E[eitT̂E |ŜT = S]
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p−−−→
n→∞

∑
S∈Sstrong

1{Ŝ = S} · e−t
2/2 +

∑
S ̸∈Sstrong

0 ·E[eitT̂E |ŜT = S]

Indeed, by proposition 3.1 we have that for ŜT ∈ Sstrong , T̂E converges to a N (0,1).

And by consistency of the t-test against any alternative well separated from 0, we

have that all groups with strong first-stages are selected asymptotically, implying: ∀S ̸∈
Sstrong, 1{ŜT = S} p−−−→

n→∞
0, hence the second line of the above display (by continuous

mapping theorem).

Notice that by Jensen inequality: |E[eitT̂E |ŜT ]| ≤ E[|eitT̂E ||ŜT ] = 1, hence by the domi-

nated convergence theorem we get:

E[eitT̂E ] = E
[
E[eitT̂E |ŜT ]

]
p−−−→

n→∞
E

 ∑
S∈Sstrong

1{Ŝ = S} · e−t
2/2 +

∑
S ̸∈Sstrong

0


= e−t

2/2 (characteristic function of a N (0,1) )

By Jensen inequality we have: |E[eitT̂E ]| ≤ E[|eitT̂E |] = 1 and since convergence in proba-

bility and boundedness (in C) imply convergence in L1, we have:

E
[∣∣∣E[eitT̂E |ŜT ]− e−t

2/2
∣∣∣]−−−→

n→∞
0

By Jensen inequality again, we have:∣∣∣E[eitT̂E ]− e−t
2/2
∣∣∣= ∣∣∣E[eitT̂E − e−t

2/2]
∣∣∣

≤ E
[∣∣∣eitT̂E − e−t

2/2
∣∣∣]−−−→

n→∞
0

Hence we have that unconditionally, T̂E converges to a N (0,1). Q.E.D.

PROOF OF COROLLARY 4: Firstly, by proposition 3.1 we have that for any realization

Ŝ of S ∈ Sstrong, one can build asymptotically valid conditional confidence intervals with

coverage (1− α) in the usual way:

CIα(S) =

[
τ̂E(S)−

√
V̂ τ̂E(S)

√
nE

· q1−α
2
, τ̂E(S) +

√
V̂ τ̂E(S)

√
nE

· q1−α
2

]
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where V̂ τ̂E(S) is a consistent estimator of the asymptotic variance of τ̂E(S), and q1−α
2

is

the (1 − α
2 ) quantile of the N (0,1) distribution. Those CIs are asymptotically valid by

proposition 3.1, i.e.:

P[LATE ∈CIα(Ŝ)] | Ŝ = S −−−−→
n−→∞

1− α

Now, by the law of iterated expectations, we have that:

P[LATE ∈CIα(Ŝ)] =E
[
E[1{LATE ∈CIα(Ŝ)}|Ŝ = S]

]
−−−→
n→∞

1− α

which is the second statement of corollary 4.

Now let us turn to the first statement, i.e.,

lim
n→∞

P
[√

nE · length[CIα(S)]≤
√
nE · length[CITSLSα ]

]
= 1

√
nE · length[CIα(S)] and

√
nE · length[CITSLSα ] are entirely governed by and strictly

increasing in V̂ τ̂(S) and V̂ TSLS respectively. Let V̂ τ̂(S) and V̂ TSLS be estimators that con-

verge in probability to V τ̂(S) and V TSLS, and we assumed that S was such that we were in

the inequality case of proposition 3.2, i.e.,

V τ̂E(S) < V TSLS

Let us denote by
√
nE · length[CI0α(S)] and

√
nE · length[CI0,TSLSα ] the (rescaled) CIs

constructed with the true values of the asymptotic variances, i.e., V τ̂(S) and V TSLS respec-

tively. We thus have:

∀ε1 > 0, lim
n→∞

P[
∣∣√nE · length[CIα(S)−

√
nE · length[CI0α(S)

∣∣> ε] = 0

and

∀ε2 > 0, lim
n→∞

P[
∣∣∣√nE · length[CITSLSα ]−

√
nE · length[CI0,TSLSα ]

∣∣∣> ε] = 0

Since V τ̂E(S) < V TSLS, we have that

√
nE · length[CI0α(S)<

√
nE · length[CI0,TSLSα ]
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Hence we have:

lim
n→∞

P
[√

nE · length[CIα(S)]<
√
nE · length[CITSLSα ]

]
= 1

Q.E.D.

PROOF OF PROPOSITION 8: Lemma 7 states that as nT goes to infinity, there are only

a certain set of values that Ŝ can take, denoted Sstrong. When S takes its value in some

subsets of Sstrong, the analysis of the asymptotic distribution of τ̂E(S) is straightforward.

Indeed, as long as all groups with weak first-stages are included in the selected sample, we

are back to the case previously studied in proposition 3 as we can recast the problem as one

with two groups:

1. One including all groups with a strong or a weak first-stage, plus groups with zero first

stages that are included in the selected sample defined by S. By construction, overall

this group has a strong first-stage.

2. One including all groups with zero first-stages that are not included in the selected

sample defined by S. By construction, overall this group has a zero first-stage.

Then we know by proposition 3 that the asymptotic distribution of τ̂(S) in such a setting

will be centered on the LATE. Formally, let us defined:

S0
strong ≡ {S ∈ Sstrong : ∀g ∈ GW , Sg = 1}

S1
strong ≡ {S ∈ Sstrong : ∃g ∈ GW , Sg = 0}

By proposition 3 and the argument above, we have:

∀S ∈ S0
strong,

√
nE · (τ̂(S)−LATE)

d−→N (0, V S)

Now, we turn to the case where S belongs to the set S1
strong. This includes all cases in which

some of the groups with a weak share of compliers get excluded from the restricted sample.

We can always reframe such a situation by redefining two groups:

1. Group 1 including all selected groups as defined S. By construction, overall this group

has a strong first-stage.

2. Group 2 including all excluded groups. By construction, since (by definition of S1
strong)

it contains groups with weak first-stages, overall this group has a weak first-stage as

well.
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Recasting the problem in this way places it in the setting studied in lemma 14, which proves

the result.

Q.E.D.

2. PROOFS OF LEMMAS

PROOF OF LEMMA 1: Let G be a binary covariate partitioning the population such that:

• the share of compliers in groups G= 0 and G= 1 are respectively given by π0 = 0 and

π1 > 0. We denote by π̂0 and π̂1 the first-stage estimators in each of those two groups.

• the LATE in group G = 1 is denoted LATE1. Note that is matches the LATE in the

overall population since there are not any compliers in group G= 0.

• in group G= 0, we have:

BAT−NT ≡E [Y (1)|G= 0,D(1) =D(0) = 1]−E [Y (0)|G= 0,D(1) =D(0) = 0] ̸= 0

The last point states that the average outcome of always-takers, characterized by D(1) =

D(0) = 1, and for whom we always observe Y (1), is different from the average outcome of

never-takers, characterized by D(1) =D(0) = 0, and for whom we always observe Y (0).

First of all, notice that group G = 1 is selected with probability tending to 1 as n goes

to infinity (by consistency of the t-test against alternatives well separated from 0). With

probability tending to (1− α), where α is the level of the t-test used for selection, group

G = 0 is not selected. See lemma 2 for a proof of these statements. Therefore, the event

(resulting from our unilateral t-test on group first-stages) we are interested in is:

{Group G= 0 is selected}⇔
{
1

{√
n0 · π̂

0

σ̂π̂
0 > q1−α

}
= 1

}
With probability tending to (1−α), only group G= 1 is selected. The event determining

whether group 1 is selected alone or not does not depend on the observations in this group.

Therefore, the 2SLS estimator computed on observations of group G = 1 alone has an

asymptotic distribution conditonal on the event {Group G= 0 is selected} that remains the

same as its unconditional asymptotic distribution. By standard results on 2SLS estimation

we get that the standard 2SLS estimator computed on observations from subgroup G = 1
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(denoted L̂ATE1) will be asymptotically normal and centered on LATE1:

√
n1 ·

(
L̂ATE1 −LATE1

)
−−−→
n→∞

N (0, V 1)

However, when both group G = 0 and G = 1 are selected with asymptotic probability α,

the 2SLS estimator computed on both groups (denoted L̂ATE) satisfies:

√
n ·
(
L̂ATE −LATE

)
=
√
n ·
(
L̂ATE −LATE1

)

=
√
n ·

 ÎTT1π̂1
−LATE1 −

ÎTT1

π̂1
· P̂0 · π̂0

P̂0 · π̂0 + P̂1 · π̂1︸ ︷︷ ︸
≡A

+
P̂0 · π̂0 · ÎTT0
P̂0 · π̂0 + P̂1 · π̂1︸ ︷︷ ︸

≡B


=
√
n ·

(
ÎTT1

π̂1
−LATE1

)
−
√
n ·A+

√
n ·B

where P̂g ≡ P̂[G = g] = ng/n and ÎTTg denotes the difference-in-means estimator

of the intention-to-treat estimand (E[Y |Z = 1] − E[Y |Z = 0]) in group G = g. If

we were reasoning unconditionally, for instance without conditioning on the event

{Group G= 0 is selected}, then we would have that both A and B have distributions cen-

tered on 0 by Slutsky and the continuous mapping theorem, since
√
n · π̂0 d−−−→

n→∞
N (0, Vπ̂0).

Thus L̂ATE would be
√
n-consistent for the LATE. However, we are interested in the dis-

tribution of L̂ATE conditional on the event {Group G= 0 is selected}, which is equivalent

to conditioning on
√
n · π̂0 being larger than a given threshold t. We then have:

√
n · π̂0 |

√
n · π̂0 > t

d−−−→
n→∞

N (0,LB = t, Vπ̂0)

where N (0,LB = t, Vπ̂0) denote the distribution of a truncated normal distribution

N (0, Vπ̂0) with lower bound t. This distribution is not centered at 0. Therefore, since ÎTT1
does not go to 0, we already have that our first bias term A does not vanish anymore. This

is a first source of first-order bias in the estimation of the LATE with this naive pre-testing

procedure. This one is intuitive: as our pre-test tends to select cases in which we overesti-

mate the share of compliers in group G = 0, we tend to overestimate the overall share of
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compliers, and thus this shrinks the estimator towards 0.

However, there is potentially a second source of bias that comes from the non causal com-

parison between always-takers and never-takers in group G= 0. Indeed, since there are no

compliers in this group, having a large first-stage in G= 0 necessarily means that there is

an imbalance between the share of always takers and the share of never-takers in this sub-

sample. If we do not condition on the size of the estimated first-stage coefficient π̂0, then we

still have that those shares are balanced on average, and thus we have ÎTT 0 p−−−→
n→∞

0 and,

by Slutsky’s lemma
√
n · π̂0 · ÎTT 0 d−−−→

n→∞
N (0, Ṽ0). However, once we condition on the

estimated first-stage coefficient, the probability limit of ÎTT 0 and the limiting distribution

of
√
n · π̂0 · ÎTT 0 are quite different. Indeed, we have:

ÎTT 0 | π̂0 = f
p−−−→

n→∞
f ·BAT−NT

Hence once we turn to the study of the limiting distribution of
√
n · π̂0 · ÎTT 0, we get:

√
n · π̂0 · ÎTT 0 |

√
n · π̂0 > t

d−−−→
n→∞

N (0,LB = t, Vπ̂0) ·BAT−NT

If BAT−NT = 0, then this limiting distribution becomes degenerate at 0, and the second

bias term B is null. However, if BAT−NT = 0, then this additional term B is not cen-

tered at 0, and therefore it adds an additional first-order bias to the estimator L̂ATE. Once

again, this is intuitive as this second bias term B comes from the fact that in group G= 0,

we end up comparing always-takers with never-takers once we condition on the estimated

first-stage π̂0 to be larger than a threshold. This is not an issue when the expected out-

come of always takers and never-takers is the same (BAT−NT = 0), as this difference will

concentrate around zero in this case. This is not the case if the expected outcome of always-

takers and never-takers differ (BAT−NT ̸= 0), in which case their comparison leads to the

introduction of a first-order bias.

Q.E.D.

PROOF OF LEMMA 5: As showed previously, if we denote by τ̂1 the estimator con-

structed using the fold I2 as the test sample and I1 as the estimation sample, recall that
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we can decompose it as follows:√
n(1)(τ̂1 −LATE) =

1√
n(1)

∑
i

ψτ̂1,i

where the expression of the influence function is given by:

ψτ̂1,i =
1

pC,ŜG,(2)=1

(
1

E[ZŜG,(2)]
ZiŜGi,2 · (εi −E[ε|Z = 1, ŜG,(2) = 1])

− 1

E[(1−Z)ŜG,(2)]
(1−Zi)ŜGi,2 · (εi −E[ε|Z = 0, ŜG,(2) = 1])

)

with Ŝg,(2) denoting the selection indicator for group g computed in fold I2 as follows:

Ŝg,(2) ≡ 1

π̂g(2) > σ̂π
g√
ng
(2)

· q1−α


where ng

(2)
is the number of observations in group g in sample I1, π̂g

(2)
is the (difference

in means) estimator of the first-stage in group g, and σ̂π
g

is a consistent estimator of the

(asymptotic) variance of π̂g
(2)

. Second, recall (from the proof of corollary 4 above) that:

√
ng
(2)

·
[
π̂g
(2)

− πg
]
=

1√
ng
(2)

·


ng
(2)∑
i=1

(
Zi (Di −E[D | Z = 1]

E[Z]
+

(1−Zi) · (Di −E[D | Z = 0])

1−E[2]

)
︸ ︷︷ ︸

≡ψ̃g
i



=
1√
ng
(2)

·
ng
(2)∑
i=1

ψ̃gi

The above formulas make it clear that the potential source of dependence between τ̂1 and

τ̂2 lies in Ŝg,(2), that appears in the influence function of τ̂1 and is computed based on

observations from fold I2, also used in τ̂2. We will now study the (asymptotic) dependence

of Ŝg,(2) on ψ̃gn, the nth individual influence function entering in π̂g
(2)

. For groups g such

that πg > 0 (strong first-stage), we have that P[Ŝg,(2) = 1] −−−→
n→∞

1 and Ŝg,(2) becomes

essentially deterministic, and therefore asymptotically there are no dependence issues for
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such groups. We will therefore focus on groups g such that πg = 0. For any such group g,

and for a given number of observations ng
(2)

in this group (in fold I2), we have:

Ŝ
(ng

(2)
)

g,(2)
= 1

π̂g(2) > σ̂π
g√
ng
(2)

· q1−α

= 1

 1√
ng
(2)

·
ng
(2)∑
i=1

ψ̃gi >
σ̂π

g√
ng
(2)

· q1−α


= 1

F g,ng(2) > σ̂π
g√
ng
(2)

· q1−α


where we defined: F g,n

g
(2) ≡ 1√

ng
(2)

·
∑ng

(2)

i=1 ψ̃
g
i . Hence we can study the probability that any

additional observation modifies the value of Ŝ
(ng

(2)
)

g,(2)
as follows:

P

[
Ŝ
(ng

(2)
−1)

g,(2)
= 0, Ŝ

(ng
(2)

)

g,(2)
= 1

]

=P

F g,ng(2)−1 ≤ σ̂π
g√

ng
(2)

− 1
· (q1−α − ϵ) , F

g,ng
(2) >

σ̂π
g√
ng
(2)

· q1−α


≤ P

∣∣∣F g,ng(2)−1
∣∣∣≤ σ̂π

g√
ng
(2)

− 1
· (q1−α − ϵ) ,

∣∣∣F g,ng(2)∣∣∣> σ̂π
g√
ng
(2)

· q1−α


=P

[∣∣∣(ng(2) − 1
)
· F g,n

g
(2)

−1
∣∣∣≤√ng

(2)
− 1 · σ̂π

g

· (q1−α − ϵ) , ng
(2)

·
∣∣∣F g,ng(2)∣∣∣>√ng

(2)
· σ̂π

g

· q1−α
]

Notice that:

ng
(2)

·
∣∣∣F g,ng(2)∣∣∣ =

∣∣∣∣∣∣∣ψ̃gng(2) +
1√
ng
(2)

·
ng
(2)

−1∑
i=1

ψ̃gi

∣∣∣∣∣∣∣=
∣∣∣∣ψ̃gng

(2)

+
(
ng
(2)

− 1
)
· F g,n

g
(2)

−1
∣∣∣∣

≤
∣∣∣∣ψ̃gng

(2)

∣∣∣∣+ (ng(2) − 1
)
·
∣∣∣F g,ng(2)−1

∣∣∣ (triangle inequality)

where ψ̃g
ng
(2)

denotes the influence function of the ng
(2)

-th observation. Hence we get:

P

[
Ŝ
(ng

(2)
−1)

g,(2)
= 0, Ŝ

(ng
(2)

)

g,(2)
= 1

]
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≤ P
[∣∣∣(ng(2) − 1

)
· F g,ng

(2)
−1
∣∣∣≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ) , ng

(2)
·
∣∣∣F g,ng

(2)

∣∣∣>√ng(2) · σ̂πg · q1−α

]
=P

[∣∣∣(ng(2) − 1
)
· F g,ng

(2)
−1
∣∣∣≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ) , ng

(2)
·
∣∣∣F g,ng

(2)

∣∣∣>√ng(2) · σ̂πg · q1−α

]
≤ P

[∣∣∣∣ψ̃g
ng
(2)

∣∣∣∣>√ng(2) · σ̂πg · q1−α −
(
ng
(2)

− 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ , (

ng
(2)

− 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣≤√ng(2) · σ̂πg · (q1−α − ϵ)

]
≤ P

[∣∣∣∣ψ̃g
ng
(2)

∣∣∣∣>√ng(2) · σ̂πg · q1−α −
(
ng
(2)

− 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ ,(

ng
(2)

− 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ)

]
≤ P

[∣∣∣∣ψ̃g
ng
(2)

∣∣∣∣>√ng(2) · σ̂πg · q1−α −
√
ng
(2)

− 1 · σ̂πg · (q1−α − ϵ)

]
=P

[∣∣∣∣ψ̃g
ng
(2)

∣∣∣∣> σ̂π
g · q1−α ·

(√
ng
(2)

−
√
ng
(2)

− 1
)
+ ϵ ·

√
ng
(2)

− 1 · σ̂πg
]

For ng
(2)

large enough, we have:

σ̂π
g

· q1−α ·
(√

ng
(2)

−
√
ng
(2)

− 1
)
+ ϵ ·

√
ng
(2)

− 1 · σ̂π
g

≈ ϵ ·
√
ng
(2)

− 1 · σπ
g

−−−→
n→∞

∞

Hence we get:

P

[
Ŝ
(ng

(2)
−1)

g,(2)
= 0, Ŝ

(ng
(2)

)

g,(2)
= 1

]
≤ P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣> σ̂π
g

· q1−α ·
(√

ng
(2)

−
√
ng
(2)

− 1
)
+ ϵ ·

√
ng
(2)

− 1 · σ̂π
g
]
−−−→
n→∞

0

Therefore, for n (and therefore ng
(2)

) large enough, Ŝ
(ng

(2)
)

g,(2)
becomes independent of any

single observations from sample I2, and consequently so does τ̂1. Therefore, under those

standard asymptotics, τ̂1 and τ̂2 are asymptotically independent. Q.E.D.

PROOF OF LEMMA 2: The random vector Ŝ stacks the tests statistics:

T gα,nT = 1

{√
ngT · π̂

g

σ̂g
> q1−α

}
where ngT denotes the test sample size in group G = g. Notice that here we are assuming

that the sample sizes of the groups are not random, which is asymptotically equivalent to

sampling with a fixed fraction. We also denote by π̂g the estimator of πg , σ̂g the estimator

of the variance of π̂g , and q1−α
2

the 1− α
2 quantile of a N (0,1).
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The t-test being consistent against any alternative well separated from 0, we have:

∀g ∈ GS , lim
nT→∞

Pr[T gα,nT = 1] = 1

since we have: ∀g ∈ GS , πg > 0.

As the level of the test is α, we also have:

∀g ∈ G0, lim
nT→∞

Pr[T gα,nT = 1] = α

since we have: ∀g ∈ G0, π
g = 0. Q.E.D.

PROOF OF LEMMA 7: The proof follows exactly the same steps as for lemma 2 for

groups with 0 and strong first-stages, however using appropriate central limit theorem for

triangular arrays (Lindeberg-Feller CLT) instead of the standard CLT, as the presence of

groups with weak first-stages requires that the DGP changes with n. For groups with weak

first-stages, we have that the first-stage parameter takes the form πg = Hg
√
nT

, where Hg is

what is often called the “location parameter”. Therefore, we have:

√
nT · π̂

g

σ̂g
d−→N (Hg,1)

The quantiles of a |N (b,1)| are increasing in b, and by assumption Hg > 0. Hence using

the same definition of the test statistic as in the proof of lemma 2, we get:

∀g ∈ GW , lim
nT→∞

Pr[T gα,nT = 1]> α

Q.E.D.

3. AUXILIARY LEMMAS

LEMMA 11—Influence function of the estimator of a CEF: The influence function of

the estimator
∑

iZiYi∑
Zi

of the conditional expectation function E[Y |Z = 1] is given by: ψi =
Zi(Yi−E[Y |Z=1])

E[Z] .

PROOF: Cf. Kennedy (2023), for instance.

Q.E.D.
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LEMMA 12—Influence function of the ratio of two asymptotically linear estimators:

Let Â and B̂ be asymptotically linear estimators:

√
n(Â−A) =

1√
n

n∑
i=1

ai + oP (1)

and

√
n(B̂ −B) =

1√
n

n∑
i=1

bi + oP (1)

with E[ai] = E[bi] = 0. Then we have:

√
n

(
Â

B̂
− A

B

)
=

1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

PROOF: There is a general relationship which is easy to verify:

Â

B̂
− A

B
=

(
Â−A

B
− A

B

B̂ −B

B

)
·

(
1− B̂ −B

B̂

)

Plugging the representations of Â and B̂ as asymptotically linear estimators into the first

formula, we obtain:

√
n

(
Â

B̂
− A

B

)
=


1√
n

n∑
i=1

ai + oP (1)

B
− A

B

1√
n

n∑
i=1

bi + oP (1)

B

 ·

(
1− B̂ −B

B̂

)

=

(
1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

)
·
(
1− oP (1)

OP (1)

)

=
1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

where we went from the first to the second equality because (i) (B̂ − B) = oP (1) by the

weak LLN, since it is an empirical mean of terms bi with expectation 0, (ii) B̂ = Op(1)

since it converges in probability to B <∞, and (iii) since OP (1)−1 = OP (1) and oP (1) ·
OP (1) = oP (1), we have: B̂−B

B̂
= oP (1).

Q.E.D.
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LEMMA 13—Asymptotic distribution of 2SLS/Wald estimator:

√
n(τ̂Wald −LATE)

d→N (0, V (ψτ̂Wald,i))

where V (ψτ̂Wald,i) equals:

V (ψτ̂Wald,i) =
1

p2C

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)
PROOF: The Wald estimator is merely a ratio of difference of conditional expectation

function (CEF) estimators and it estimates the LATE, which is a ratio of difference of CEFs.

Therefore, we can see it as the combination of several asymptotically linear estimators:

Â=

(∑
i

Zi

)−1∑
i

ZiYi, A=E[Y |Z = 1]

B̂ =

(∑
i

(1−Zi)

)−1∑
i

(1−Zi)Yi, B =E[Y |Z = 0]

Ĉ =

(∑
i

Zi

)−1∑
i

ZiDi, C =E[D|Z = 1]

D̂ =

(∑
i

(1−Zi)

)−1∑
i

(1−Zi)Di, D =E[D|Z = 0]

hence LATE =
A−B

C −D
and τ̂Wald =

Â− B̂

Ĉ − D̂

Since Â, B̂, Ĉ and D̂ are the estimators of conditional expectations, their influence func-

tions are given respectively by:

ai =
Zi(Yi −E[Y |Z = 1])

E[Z]
bi =

(1−Zi)(Yi −E[Y |Z = 0])

1−E[Z]

ci =
Zi(Di −E[D|Z = 1])

E[Z]
di =

(1−Zi)(Yi −E[D|Z = 0])

1−E[Z]

We then have:

√
n(τ̂Wald −LATE) =

1√
n

∑
i

ψτ̂Wald,i + oP (1)
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where (following lemma 12) ψτ̂Wald,i is given by:

ψτ̂Wald,i =
(ai − bi)−LATE · (ci − di)

C −D

=
1

π

(
Zi(Yi −E[Y |Z = 1])

E[Z]
− (1−Zi)(Yi −E[Y |Z = 0])

1−E[Z]

−LATE ·
(
Zi(Di −E[D|Z = 1])

E[Z]
− (1−Zi)(Di −E[D|Z = 0])

1−E[Z]

))
=

1

π

(
1

p
Zi · (εi −E(ε|Z = 1))− 1

1− p
(1−Zi) · (εi −E(ε|Z = 0))

)
where ε= Y −LATE ·D is the structural error term of the second stage, and π =E[D(1)−
D(0)] is the share of compliers. As expected from an influence function, one can check that

E[ψτ̂Wald,i] = 0. It follows that asymptotically,

√
n(τ̂Wald −LATE)

d→N (0, V (ψτ̂Wald,i))

where V (ψτ̂Wald,i) equals:

V (ψτ̂Wald,i) =E(ψ2
τ̂Wald,i)

=E(ψ2
τ̂Wald,i|Z = 1)p+E(ψ2

τ̂Wald,i|Z = 0)(1− p)

=
1

π2

(
1

p
E[(ε−E[ε|Z = 1])2|Z = 1] +

1

1− p
E[(ε−E[ε|Z = 0])2|Z = 0]

)
=

1

π2

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)
Q.E.D.

LEMMA 14—Bias of the test-and-select estimator in the 3-group case: Let’s consider a

case with only three groups: a group with a strong first-stage (π1 > 0), a group with a weak

first-stage (π2 =H2/
√
n), and a group with a zero first-stage (π3 = 0). Under assumption

3, and we have:

√
nE (τ̂(S)−LATE)

d−→N (B(S), V S))

with B(S) = H2·Pr[G=2]
π ·

(
LATE1 −LATE2

)
if group 2 is not selected.
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PROOF: Let’s consider a case with only three groups: a group with a strong first-stage

(π1 > 0), a group with a weak first-stage (π2 =H2/
√
n), and a group with a zero first-stage

(π3 = 0).

Group 1 is always selected as asymptotically (as nT goes to infinity), the selection proce-

dure selects groups with a strong first-stage with probability 1.

Group 3 being selected or not does not affect the expectation of the limiting distribution

of the (
√
n−scaled) resulting estimator, as shown in the proof of proposition 3.1. We can

therefore ignore group 3, or simply redefine group 1 or group 2 as including group 3 as

well, without any changes in the result, and simply consider the two following cases:

1. Group 1 is selected, group 2 is selected

2. Group 1 is selected, group 2 is not selected

In the first case, the resulting estimator is the standard Wald estimator1 computed on the

whole estimation sample. It is therefore
√
n−consistent (no asymptotic bias).

In the second case, the resulting estimator corresponds to the Wald estimator computed on

group 1. Therefore, it is a
√
n−consistent estimator for the LATE conditional on being in

group 1, which we define below:

LATE1 ≡ E[Y (1)− Y (0)|D(1)>D(0),G= 1]

In other words, denoting by τ̂(S2) the estimator in case 2, we have:

√
nE ·

(
τ̂(S2)−LATE1

) d−→N (0, V S2

)

Now, since we are interested in the limiting distribution of
√
nE ·

(
τ̂(S2)−LATE

)
, what

is left to study is the behavior of:

√
nE ·

(
LATE1 −LATE

) ?−→ 0

At first, the quantities involved above might seem independent of nE . The dependence

of LATE on nE comes from the fact that the share of compliers in group 2 depends on

nE , as we have: π2 =H2/
√
nE .

1Whether or not group 3 (group with no first-stage at all) is included or not in the estimation will have an effect

on the variance of the resulting estimator, as argued in the first part of this paper (with standard asymptotics).
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We have:

LATEg =E[Y (1)− Y (0)|D(1)>D(0),G= g]

LATE =E[Y (1)− Y (0)|D(1)>D(0)]

= E[Y (1)− Y (0)|D(1)>D(0),G= 1] ·Pr[G= 1|D(1)>D(0)]

+ E[Y (1)− Y (0)|D(1)>D(0),G= 2] ·Pr[G= 2|D(1)>D(0)] (Law of iterated exp.)

= LATE1 · Pr[D(1)>D(0)|G= 1] ·Pr[G= 1]

Pr[D(1)>D(0)]

+ LATE2 · Pr[D(1)>D(0)|G= 2] ·Pr[G= 0]

Pr[D(1)>D(0)]
(Bayes’ rule)

= LATE1 · π
1 ·Pr[G= 1]

π
+LATE2 · π

2 ·Pr[G= 2]

π

where the last line uses our standard notations:

πg ≡ E[D(1)−D(0)|G= g]

π ≡ E[D(1)−D(0)] = π1 ·Pr[G= 1] + π2 ·Pr[G= 2]

Hence we get:

√
nE ·

(
LATE1 −LATE

)
=
√
nE ·

(
LATE1 ·

(
1− π1 ·Pr[G= 1]

π

)
−LATE2 · π

2 ·Pr[G= 2]

π

)
=
√
nE · π

2 ·Pr[G= 2]

π
·
(
LATE1 −LATE2

)
=
H2 ·Pr[G= 2]

π
·
(
LATE1 −LATE2

)
Therefore, we have in this case:

√
nE ·

(
τ̂(S2)−LATE

)
=
√
nE ·

(
τ̂(S2)−LATE1

)
+
√
nE ·

(
LATE1 −LATE

)
=
√
nE ·

(
τ̂(S2)−LATE1

)
+B(S2)

d−→N (B(S2), V S2

) (Slutsky’s lemma)

with B(S2)≡ H2·Pr[G=2]
π ·

(
LATE1 −LATE2

)
. Q.E.D.
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LEMMA 15—Bias of Coussens and Spiess (2021) estimator: Under assumption 4, the

estimator studied in Coussens and Spiess (2021) has a first-order bias.

PROOF: The proof follows the one of Proposition 6 in Coussens and Spiess (2021). The

only difference resides in the fact that assumption 4 does not assume that all treatment

effects are of order 1/
√
n, but simply that the treatment effect heterogeneity is. We will use

Coussens and Spiess (2021) notations.

Assumption 4, translated in their notations, can be written as: τ(X) = λ+ µ(X)√
n

.

Their proof goes as follows:

√
n (τ̂w − τ) =

√
n (τ̂w − τw) +

√
n (τw − τ)︸ ︷︷ ︸

=Bw

=
√
n (τ̂w − τw) +Bw

d−→N (Bw, Vw)

where Bw = Cov(µ(X),w(X)|D(1)>D(0))
E[w(X)|D(1)>D(0)] .

The convergence of
√
n (τ̂w − τw) to a normal centered on 0 results from proposition 5 in

Coussens and Spiess (2021). τw is the estimand towards which their estimator τ̂w converges

in the absence of any restrictions on heterogeneity, and τ is the LATE parameter.

We simply need to study whether we still have
√
n (τw − τ) = Bw under the treatment

effect modeling τ(X) = λ+ µ(X)√
n

. Indeed, we find:

√
n (τw − τ) =

E[α(X)w(X)
√
nτ(X)]

E[α(X)w(X)]
− E[α(X)

√
nτ(X)]

E[α(X)]

=
E[α(X)w(X)µ(X)]E[α(X)]−E[α(X)µ(X)]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]

− E[α(X)w(X)
√
nµ]E[α(X)]−E[α(X)

√
nµ]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]

=

E[α(X)w(X)µ(X)]

E[α(X)]
− E[α(X)µ(X)]

E[α(X)]

E[α(X)w(X)]

E[α(X)]

E[α(X)w(X)]

E[α(X)]

−
√
nµ

E[α(X)w(X)]E[α(X)]−E[α(X)]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]︸ ︷︷ ︸
=0

=Bw + 0
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Hence the result of proposition 6 of Coussens and Spiess (2021) remains under our own

assumption 4 on treatment effect heterogeneity. Q.E.D.

4. DETAIL OF MONTE-CARLO SIMULATION DGPS

To simulate a flexible DGP, we use the threshold crossing model representation (Vytlacil,

2002).2 Let (δi, εi)′ ∼N (0,Σ), with

Σ=

(
σδ = 1 ρδε

ρδε σε = 1

)

where δi is the latent tendency to receive treatment and εi is the baseline untreated potential

outcome for individual i. We denote by ρδε the correlation coefficient between δi and εi.

The potential treatment indicators are given by:

Di(0) = 1(ΦΣ(δi)< SAT ), Di(1) = 1(ΦΣ(δi)< 1− SNT )

where ΦΣ denotes the cdf of a N
(
0⃗,Σ

)
, and SAT and SNT represent the share of always-

takers and never-takers in the population, respectively. The realized treatment is given by:

Di =Di(0) · (1−Zi) +Di(1) ·Zi

We also define a covariate X as Xi = δi+ ηi where ηi ∼N (0, σ2η). X is therefore a noisy

predictor of treatment receipt. Then, a group variable G is defined as the J -quantiles of X :

Gi = 1

(
F (Xi) ∈

[
j − 1

J
,
j

J

])
So far we have followed the simulation study of Coussens and Spiess (2021), but for the

potential outcomes we deviate significantly:

Yi(0) = εi, Yi(1)− Yi(0) = β ·
[
απ̃G(i) + (1− α)νi

]
where π̃G = πG−EG(πG) is the centered compliance rate by group with G(i) representing

the group G of individual i and νi ∼N (0, σ2πG). The reason we choose this parametrization

2For comparison purposes, we follow Coussens and Spiess (2021) closely in the DGP specifications of their

simulations, but deviate in key aspects for reasons that will be explained below.
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of the treatment effect is to generate a significant dependence between compliance rates and

treatment effects. Indeed, with this parametrization we have:

σ2Y (1)−Y (0) = β2σ2πG
(
α2 + (1− α)2

)
cov(πG, Yi(1)− Yi(0)) = β · α · σ2πG

cor(πG, Yi(1)− Yi(0)) =
1√

1 +

(
1− 1

α

)2

so that β controls the treatment effect heterogeneity and α the dependence between the

treatment effect and the compliance rate. Compared to this choice of parametrization, the

one chosen in Coussens and Spiess (2021) simulation study generates very little covariance

between compliance rates and treatment effects,3 which is precisely the condition leading

to a first-order bias in their estimation strategy.

Simulation to demonstrate bias in section 2 In section 2, the DGP used appends 2 DGPs

DGP0a ≡
(
N = 500,J = 15, SAT = SNT = 0.5, ρδε = 0.9, σδ = 5, σε = 5,

ση = 100, α= 0.5, β = 10
)

DGP0b ≡
(
N = 500,J = 15, SAT = SNT = 0.05, ρδε = 0.3, σδ = 1, σε = 1,

ση = 100, α= 0.5, β = 10
)

DGP0a creates the half of the sample with zero compliance. The large values for σδ and

σε ensure that there is large variance in the compliance rate.

DGP0b creates the other half of the population with 90% compliance and the standard

parameters we use in the main simulations.

Main simulations The parameters for the DGPs in section 4 are given by:

DGP1 ≡
(
N = 1000, J = 10, SAT =SNT =

0.75

2
, ρδε = 0.5, σδ = 1, σε = 1,

3This comes from the fact that the compliance rate as generated in their DGPs varies non-linearly as a function

of δ whereas the LATE depends linearly on δ.
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ση = 0.01, α= 0.5, β ∈ {1,2,3,4,6,10,20,40,80}
)

and

DGP2 ≡
(
N = 1000, J = 10, SAT =SNT =

0.75

2
, ρδε = 0.5, σδ = 1, σε = 1,

ση = 0.5, α= 0.5, β ∈ {1,2,3,4,6,10,20,40,80}
)

5. DETAIL OF APPLICATION

The data cleaning mainly follows Stephens and Yang (2014). We start from a sample of

1,175,889 individuals, following the sample selection of Stephens and Yang (2014). The

only difference is that we do not restrict the sample to white male individuals. Stephens

and Yang (2014) justify this restriction by underlining that ethnic minorities and female in-

dividuals appear to react less to compulsory schooling laws than male individuals. Instead,

we suggest making such a selection in a data-driven way, starting from the full sample.

As our main covariate (G in the theory section above), we use an interaction between

demographic controls (ethnicity × sex) × US census division × survey year (1960, 1970,

1980). Since we make the assumption that legal changes happen at random, we exclude

from our sample the G-cells without any variation in compulsory schooling laws. Indeed,

we do not want to identify the effect of compulsory schooling laws on education by com-

paring cells in which there has not been any legal changes with some in which there has

been some, as such cells are arguably quite different. This restriction is quite stringent, and

yields a sample of 171,096 individuals.

We also discretize the original instrument and treatment variables. The original instru-

ment variable in Stephens and Yang (2014) is the number of remaining compulsory years of

schooling at age 6 in the state of individuals, at the time they were aged 6. The authors end

up discretizing this variable in dummies for whether or not this number is 7, 8 or 9. In order

to consider all changes of legislations that imposed getting some high school education, we

consider the single binary instrument that equals one when the number of remaining com-

pulsory years of schooling at age 6 is larger or equal to 7. The original treatment variable

is the number of years of schooling completed after age 6. Since some laws require up to 9

years of schooling after age 6, we consider as a treatment variable completing 10 years or
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more of education. In other words, our treatment variable corresponds to completing some

high-school education.
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